Develop methods for anonymizing data for privacy-preserving AI
DOI:
https://doi.org/10.36676/jrps.v15.i1.1545Keywords:
Privacy-preserving, Anonymization, Cloud Computing, Data Utility, Scalability, Re-identification AttacksAbstract
This paper looks into the problem of privacy-preserving data publication in cloud computing, which is crucial for preserving the confidentiality of the data and using it for analytical purposes. To address this problem, we have introduced a new heuristic approach to anonymization that enhances data utility while ensuring appropriate levels of data privacy. In our methodology, we apply sophisticated simulation models to evaluate the efficiency of the anonymization method under different data sets. The main results prove that the improvement in the privacy metrics is significant compared to the prior techniques and without making substantial compromises on the usability of the data. Based on these findings, the authors believe that the generalized technique presented in this work could be implemented in genuine cloud computing environments as a powerful tool to address data privacy issues. As the final discussion, this paper presents the real-life significance of implementing this technique and future research recommendations that could expand the scope by experimenting with scalability and more optimization to handle the large volume of data and complications.
References
Aldeen Yousra, S., & Mazleena, S. (2018, May). A new heuristic anonymization technique for privacy preserved datasets publication on cloud computing. In Journal of Physics: Conference Series (Vol. 1003, p. 012030). IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/1003/1/012030/pdf DOI: https://doi.org/10.1088/1742-6596/1003/1/012030
Mallreddy, S. R., & Vasa, Y. (2023). Predictive Maintenance In Cloud Computing And Devops: Ml Models For Anticipating And Preventing System Failures. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 10(1), 213-219. DOI: https://doi.org/10.53555/nveo.v10i1.5751
Mallreddy, S. R., & Vasa, Y. (2023). Natural language querying in SIEM systems: Bridging the gap between security analysts and complex data. NATURAL LANGUAGE QUERYING IN SIEM SYSTEMS: BRIDGING THE GAP BETWEEN SECURITY ANALYSTS AND COMPLEX DATA, 10(1), 205–212. https://doi.org/10.53555/nveo.v10i1.5750 DOI: https://doi.org/10.53555/nveo.v10i1.5750
Vasa, Y., Mallreddy, S. R., & Jami, V. S. (2022). AUTOMATED MACHINE LEARNING FRAMEWORK USING LARGE LANGUAGE MODELS FOR FINANCIAL SECURITY IN CLOUD OBSERVABILITY. International Journal of Research and Analytical Reviews , 9(3), 183–190.
Vasa, Y., Singirikonda, P., & Mallreddy, S. R. (2023). AI Advancements in Finance: How Machine Learning is Revolutionizing Cyber Defense. International Journal of Innovative Research in Science, Engineering and Technology, 12(6), 9051–9060.
Vasa, Y., & Singirikonda, P. (2022). Proactive Cyber Threat Hunting With AI: Predictive And Preventive Strategies. International Journal of Computer Science and Mechatronics, 8(3), 30–36.
Vasa, Y., Mallreddy, S. R., & Jaini, S. (2023). AI And Deep Learning Synergy: Enhancing Real-Time Observability And Fraud Detection In Cloud Environments, 6(4), 36–42. https://doi.org/ 10.13140/RG.2.2.12176.83206
Katikireddi, P. M., Singirikonda, P., & Vasa, Y. (2021). Revolutionizing DEVOPS with Quantum Computing: Accelerating CI/CD pipelines through Advanced Computational Techniques. Innovative Research Thoughts, 7(2), 97–103. https://doi.org/10.36676/irt.v7.i2.1482 DOI: https://doi.org/10.36676/irt.v7.i2.1482
Vasa, Y., Cheemakurthi, S. K. M., & Kilaru, N. B. (2022). Deep Learning Models For Fraud Detection In Modernized Banking Systems Cloud Computing Paradigm. International Journal of Advances in Engineering and Management, 4(6), 2774–2783. https://doi.org/10.35629/5252-040627742783
Vasa, Y., Kilaru, N. B., & Gunnam, V. (2023). Automated Threat Hunting In Finance Next Gen Strategies For Unrivaled Cyber Defense. International Journal of Advances in Engineering and Management, 5(11). https://doi.org/10.35629/5252-0511461470
Vasa, Y., & Mallreddy, S. R. (2022). Biotechnological Approaches To Software Health: Applying Bioinformatics And Machine Learning To Predict And Mitigate System Failures. Natural Volatiles & Essential Oils, 9(1), 13645–13652. https://doi.org/https://doi.org/10.53555/nveo.v9i2.5764
Mallreddy, S. R., & Vasa, Y. (2022). Autonomous Systems In Software Engineering: Reducing Human Error In Continuous Deployment Through Robotics And AI. NVEO - Natural Volatiles & Essential Oils, 9(1), 13653–13660. https://doi.org/https://doi.org/10.53555/nveo.v11i01.5765
Vasa, Y., Jaini, S., & Singirikonda, P. (2021). Design Scalable Data Pipelines For Ai Applications. NVEO - Natural Volatiles & Essential Oils, 8(1), 215–221. https://doi.org/https://doi.org/10.53555/nveo.v8i1.5772 DOI: https://doi.org/10.53555/nveo.v8i1.5772
Singirikonda, P., Jaini, S., & Vasa, Y. (2021). Develop Solutions To Detect And Mitigate Data Quality Issues In ML Models. NVEO - Natural Volatiles & Essential Oils, 8(4), 16968–16973. https://doi.org/https://doi.org/10.53555/nveo.v8i4.5771 DOI: https://doi.org/10.53555/nveo.v8i4.5771
Vasa, Y. (2021). Develop Explainable AI (XAI) Solutions For Data Engineers. NVEO - Natural Volatiles & Essential Oils, 8(3), 425–432. https://doi.org/https://doi.org/10.53555/nveo.v8i3.5769 DOI: https://doi.org/10.53555/nveo.v8i3.5769
Sukender Reddy Mallreddy. (2023). ENHANCING CLOUD DATA PRIVACY THROUGH FEDERATED LEARNING: A DECENTRALIZED APPROACH TO AI MODEL TRAINING. IJRDO -Journal of Computer Science Engineering, 9(8), 15-22. DOI: https://doi.org/10.53555/cse.v9i8.6131
Mallreddy, S.R., Nunnaguppala, L.S.C., & Padamati, J.R. (2022). Ensuring Data Privacy with CRM AI: Investigating Customer Data Handling and Privacy Regulations. ResMilitaris. Vol.12(6). 3789-3799
Nunnagupala, L. S. C. ., Mallreddy, S. R., & Padamati, J. R. . (2022). Achieving PCI Compliance with CRM Systems. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 13(1), 529–535. DOI: https://doi.org/10.61841/turcomat.v13i1.14689
Jangampeta, S., Mallreddy, S.R., & Padamati, J.R. (2021). Anomaly Detection for Data Security in SIEM: Identifying Malicious Activity in Security Logs and User Sessions. 10(12), 295-298
Jangampeta, S., Mallreddy, S. R., & Padamati, J. R. (2021). Data Security: Safeguarding the Digital Lifeline in an Era of Growing Threats. International Journal for Innovative Engineering and Management Research, 10(4), 630-632.
Sukender Reddy Mallreddy(2020).Cloud Data Security: Identifying Challenges and Implementing Solutions.JournalforEducators,TeachersandTrainers,Vol.11(1).96 -102.
Naresh Babu Kilaru, Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam, 2021. "SOAR Solutions in PCI Compliance: Orchestrating Incident Response for Regulatory Security"ESP Journal of Engineering & Technology Advancements 1(2): 78-84. : 10.56472/25832646/ESP-V1I2P111
Sayyaparaju, K. K., Nunnaguppala, L. S. C. , & Padamati, J. R.. (2023). "Unlocking SIEM Potential: Secure, Scalable Cloud Architecture with Artificial Intelligence Machine Learning", International Journal For Recent Development In Science And Technology, 7(03), 117-130
Nunnaguppala, L. S. C. . (2023). "A Future-Proof Approach To Cybersecurity Compliance: The Power Of AI And ML In SIEM, SOAR, And Cloud SOC", Res Militaris, 13(4), 1469–1480
Sayyaparaju, K. K., Nunnaguppala, L. S. C. , & Padamati, J. R.. (2021). "Building SecureAI/ML Pipelines: Cloud Data Engineeringfor Compliance and Vulnerability Management", International Journal for Innovative Engineering and Management Research,10(10), 330-340
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal for Research Publication and Seminar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Re-users must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. This license allows for redistribution, commercial and non-commercial, as long as the original work is properly credited.