Search and Recommendation Procedure with the Help of Artificial Intelligence
DOI:
https://doi.org/10.36676/jrps.v10.i4.1503Keywords:
Artificial Intelligence, Machine Learning, Natural Language Processing, Search Engines, Recommendation Systems, Collaborative Filtering, Content-Based Filtering, Deep LearningAbstract
This comprehensive research paper examines the integration of Artificial Intelligence (AI) in search and recommendation systems, focusing on developments. The study delves into various AI techniques, including machine learning algorithms, natural language processing, and deep learning, and their applications in enhancing search procedures and recommendation systems. Through an extensive literature review, analysis of case studies, and examination of current challenges, this paper provides in-depth insights into the state-of-the-art AI-driven search and recommendation procedures. The research also discusses ethical considerations, future trends, and potential innovations in this rapidly evolving field, offering a holistic view of the subject matter for both industry professionals and academic researchers.
References
Carpineto, C., & Romano, G. (2012). A survey of automatic query expansion in information retrieval. ACM Computing Surveys, 44(1), 1-50. https://doi.org/10.1145/2071389.2071390 DOI: https://doi.org/10.1145/2071389.2071390
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70. https://doi.org/10.1145/138859.138867 DOI: https://doi.org/10.1145/138859.138867
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web (pp. 173-182). https://doi.org/10.1145/3038912.3052569 DOI: https://doi.org/10.1145/3038912.3052569
IKEA. (2017). IKEA Place AR app. https://highlights.ikea.com/2017/ikea-place/
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76-80. https://doi.org/10.1109/MIC.2003.1167344 DOI: https://doi.org/10.1109/MIC.2003.1167344
Liu, T. Y. (2009). Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 3(3), 225-331. https://doi.org/10.1561/1500000016 DOI: https://doi.org/10.1561/1500000016
Lops, P., De Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In Recommender systems handbook (pp. 73-105). Springer. https://doi.org/10.1007/978-0-387-85820-3_3 DOI: https://doi.org/10.1007/978-0-387-85820-3_3
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (pp. 4765-4774). https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
McKinsey & Company. (2018). Notes from the AI frontier: Applications and value of deep learning. https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning
McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2016). Communication-efficient learning of deep networks from decentralized data. arXiv preprintional conference on knowledge discovery and data mining (pp. 1135-1144). https://doi.org/10.1145/2939672.2939778 DOI: https://doi.org/10.1145/2939672.2939778
Robertson, S. E., & Walker, S. (1994). Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval. In SIGIR '94 (pp. 232-241). Springer. https://doi.org/10.1007/978-1-4471-2099-5_24 DOI: https://doi.org/10.1007/978-1-4471-2099-5_24
Sontag, D., Collins-Thompson, K., Bennett, P. N., White, R. W., Dumais, S., & Billerbeck, B. (2012). Probabilistic models for personalizing web search. In Proceedings of the fifth ACM international conference on Web search and data mining (pp. 433-442). https://doi.org/10.1145/2124295.2124348 DOI: https://doi.org/10.1145/2124295.2124348
Statista. (2019). Search engine market share worldwide. https://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/
Steck, H. (2018). Calibrated recommendations. In Proceedings of the 12th ACM conference on recommender systems (pp. 154-162). https://doi.org/10.1145/3240323.3240372 DOI: https://doi.org/10.1145/3240323.3240372
Zafar, M. B., Valera, I., Rogriguez, M. G., & Gummadi, K. P. (2017). Fairness constraints: Mechanisms for fair classification. In Artificial Intelligence and Statistics (pp. 962-970). PMLR. http://proceedings.mlr.press/v54/zafar17a.html
Bellapukonda, P., Vijaya, G., Subramaniam, S., & Chidambaranathan, S. (2024). Security and optimization in IoT networks using AI-powered digital twins. In Harnessing AI and Digital Twin Technologies in Businesses (p. 14). https://doi.org/10.4018/979-8-3693-3234-4.ch024
E. A. Banu, S. Chidambaranathan, N. N. Jose, P. Kadiri, R. E. Abed and A. Al-Hilali, "A System to Track the Behaviour or Pattern of Mobile Robot Through RNN Technique," 2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2024, pp. 2003-2005, doi: 10.1109/ICACITE60783.2024.10617430.
Patil, Y. M., Abraham, A. R., Chaubey, N. K., Baskar, K., & Chidambaranathan, S. (2024). A comparative analysis of machine learning techniques in creating virtual replicas for healthcare simulations. In Harnessing AI and Digital Twin Technologies in Businesses (p. 12). https://doi.org/10.4018/979-8-3693-3234-4.ch002
Bellapukonda, P., Vijaya, G., Subramaniam, S., & Chidambaranathan, S. (2024). Security and optimization in IoT networks using AI-powered digital twins. In Harnessing AI and Digital Twin Technologies in Businesses (p. 14). https://doi.org/10.4018/979-8-3693-3234-4.ch024 DOI: https://doi.org/10.4018/979-8-3693-3234-4.ch024
E. A. Banu, S. Chidambaranathan, N. N. Jose, P. Kadiri, R. E. Abed and A. Al-Hilali, "A System to Track the Behaviour or Pattern of Mobile Robot Through RNN Technique," 2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2024, pp. 2003-2005, doi: 10.1109/ICACITE60783.2024.10617430. DOI: https://doi.org/10.1109/ICACITE60783.2024.10617430
Patil, Y. M., Abraham, A. R., Chaubey, N. K., Baskar, K., & Chidambaranathan, S. (2024). A comparative analysis of machine learning techniques in creating virtual replicas for healthcare simulations. In Harnessing AI and Digital Twin Technologies in Businesses (p. 12). https://doi.org/10.4018/979-8-3693-3234-4.ch002 DOI: https://doi.org/10.4018/979-8-3693-3234-4.ch002
George, B., Oswal, N., Baskar, K., & Chidambaranathan, S. (2024). Innovative approaches to simulating human-machine interactions through virtual counterparts. In Harnessing AI and Digital Twin Technologies in Businesses (p. 11). https://doi.org/10.4018/979-8-3693-3234-4.ch018
Charaan, R. M. D., Chidambaranathan, S., Jothivel, K. M., Subramaniam, S., & Prabu, M. (2024). Machine learning-driven data fusion in wireless sensor networks with virtual replicas: A comprehensive evaluation. In Harnessing AI and Digital Twin Technologies in Businesses (p. 11). https://doi.org/10.4018/979-8-3693-3234-4.ch020
Ayyavaraiah, M., Jeyakumar, B., Chidambaranathan, S., Subramaniam, S., Anitha, K., & Sangeetha, A. (2024). Smart transportation systems: Machine learning application in WSN-based digital twins. In Harnessing AI and Digital Twin Technologies in Businesses (p. 11). https://doi.org/10.4018/979-8-3693-3234-4.ch026
Venkatesan, B., Mannanuddin, K., Chidambaranathan, S., Jeyakumar, B., Rayapati, B. R., & Baskar, K. (2024). Deep learning safeguard: Exploring GANs for robust security in open environments. In Enhancing Security in Public Spaces Through Generative Adversarial Networks (GANs) (p. 14). https://doi.org/10.4018/979-8-3693-3597-0.ch009
P. V, V. R and S. Chidambaranathan, "Polyp Segmentation Using UNet and ENet," 2023 6th International Conference on Recent Trends in Advance Computing (ICRTAC), Chennai, India, 2023, pp. 516-522, doi: 10.1109/ICRTAC59277.2023.10480851.
Athisayaraj, A. A., Sathiyanarayanan, M., Khan, S., Selvi, A. S., Briskilla, M. I., Jemima, P. P., Chidambaranathan, S., Sithik, A. S., Sivasankari, K., & Duraipandian, K. (2023). Smart thermal-cooler umbrella (UK Design No. 6329357).approaches to simulating human-machine interactions through virtual counterparts. In Harnessing AI and Digital Twin Technologies in Businesses (p. 11). https://doi.org/10.4018/979-8-3693-3234-4.ch018 DOI: https://doi.org/10.4018/979-8-3693-3234-4.ch018
Charaan, R. M. D., Chidambaranathan, S., Jothivel, K. M., Subramaniam, S., & Prabu, M. (2024). Machine learning-driven data fusion in wireless sensor networks with virtual replicas: A comprehensive evaluation. In Harnessing AI and Digital Twin Technologies in Businesses (p. 11). https://doi.org/10.4018/979-8-3693-3234-4.ch020 DOI: https://doi.org/10.4018/979-8-3693-3234-4.ch020
Ayyavaraiah, M., Jeyakumar, B., Chidambaranathan, S., Subramaniam, S., Anitha, K., & Sangeetha, A. (2024). Smart transportation systems: Machine learning application in WSN-based digital twins. In Harnessing AI and Digital Twin Technologies in Businesses (p. 11). https://doi.org/10.4018/979-8-3693-3234-4.ch026 DOI: https://doi.org/10.4018/979-8-3693-3234-4.ch026
Venkatesan, B., Mannanuddin, K., Chidambaranathan, S., Jeyakumar, B., Rayapati, B. R., & Baskar, K. (2024). Deep learning safeguard: Exploring GANs for robust security in open environments. In Enhancing Security in Public Spaces Through Generative Adversarial Networks (GANs) (p. 14). https://doi.org/10.4018/979-8-3693-3597-0.ch009 DOI: https://doi.org/10.4018/979-8-3693-3597-0.ch009
P. V, V. R and S. Chidambaranathan, "Polyp Segmentation Using UNet and ENet," 2023 6th International Conference on Recent Trends in Advance Computing (ICRTAC), Chennai, India, 2023, pp. 516-522, doi: 10.1109/ICRTAC59277.2023.10480851. DOI: https://doi.org/10.1109/ICRTAC59277.2023.10480851
Athisayaraj, A. A., Sathiyanarayanan, M., Khan, S., Selvi, A. S., Briskilla, M. I., Jemima, P. P., Chidambaranathan, S., Sithik, A. S., Sivasankari, K., & Duraipandian, K. (2023). Smart thermal-cooler umbrella (UK Design No. 6329357).
Krishnateja Shiva. (2024). Natural Language Processing for Customer Service Chatbots: Enhancing Customer Experience. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 155–164. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6405
Ashutosh Tripathi, Low-Code/No-Code Development Platforms,
International Journal of Computer Applications (IJCA), 4(1), 2023, pp. 27–35.
https://iaeme.com/Home/issue/IJCA?Volume=4&Issue=1
Ashutosh Tripathi, Optimal Serverless Deployment Methodologies:
Ensuring Smooth Transitions and Enhanced Reliability, Face Mask Detection, Journal
of Computer Engineering and Technology (JCET) 5(1), 2022, pp. 21-28.
Tripathi, A. (2020). AWS serverless messaging using SQS. IJIRAE: International Journal of Innovative Research in Advanced Engineering, 7(11), 391-393. DOI: https://doi.org/10.26562/ijirae.2020.v0711.003
Tripathi, A. (2019). Serverless architecture patterns: Deep dive into event-driven, microservices, and serverless APIs. International Journal of Creative Research Thoughts (IJCRT), 7(3), 234-239. Retrieved from http://www.ijcrt.org
Kumar, A., Dodda, S., Kamuni, N., & Arora, R. K. (2024). Unveiling the impact of macroeconomic policies: A double machine learning approach to analyzing interest rate effects on financial markets. arXiv. https://arxiv.org/abs/2404.07225 DOI: https://doi.org/10.36227/techrxiv.171260001.17596245/v1
Suresh Dodda, Anoop Kumar, Navin Kamuni, et al. Exploring Strategies for Privacy-Preserving Machine Learning in Distributed Environments. TechRxiv. April 18, 2024.
DOI: 10.36227/techrxiv.171340711.17793838/v1 DOI: https://doi.org/10.36227/techrxiv.171340711.17793838/v1
Kumar, A., Ayyalasomayajula, M. M. T., Panwar, D., & Vasa, Y. (2024). Optimizing photometric light curve analysis: Evaluating Scipy's minimize function for eclipse mapping of cataclysmic variables. arXiv. https://doi.org/10.48550/arXiv.2406.00071
Kumar, A., Dodda, S., Kamuni, N., & Vuppalapati, V. S. M. (2024). The emotional impact of game duration: A framework for understanding player emotions in extended gameplay sessions. arXiv. https://doi.org/10.48550/arXiv.2404.00526 DOI: https://doi.org/10.1109/AIIoT58432.2024.10574558
Kumar, A. (2019). Implementation core business intelligence system using modern IT development practices (Agile & DevOps). International Journal of Management, IT and Engineering, 8(9), 444-464. https://doi.org/10.5281/zenodo.1234567
Krishnateja Shiva. (2024). Natural Language Processing for Customer Service Chatbots: Enhancing Customer Experience. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 155–164. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6405
Krishnateja Shiva. (2022). Leveraging Cloud Resource for Hyperparameter Tuning in Deep Learning Models. International Journal on Recent and Innovation Trends in Computing and Communication, 10(2), 30–35. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10980
Shiva, K., Etikani, P., Bhaskar, V. V. S. R., Palavesh, S., & Dave, A. (2022). The rise of robo-advisors: AI-powered investment management for everyone. Journal of Namibian Studies, 31, 201-214.
Etikani, P., Bhaskar, V. V. S. R., Choppadandi, A., Dave, A., & Shiva, K. (2024). Forecasting climate change with deep learning: Improving climate modeling accuracy. African Journal of Bio-Sciences, 6(14), 3903-3918. https://doi.org/10.48047/AFJBS.6.14.2024.3903-3918
Etikani, P., Bhaskar, V. V. S. R., Nuguri, S., Saoji, R., & Shiva, K. (2023). Automating machine learning workflows with cloud-based pipelines. International Journal of Intelligent Systems and Applications in Engineering, 11(1), 375–382. https://doi.org/10.48047/ijisae.2023.11.1.375
Etikani, P., Bhaskar, V. V. S. R., Palavesh, S., Saoji, R., & Shiva, K. (2023). AI-powered algorithmic trading strategies in the stock market. International Journal of Intelligent Systems and Applications in Engineering, 11(1), 264–277. https://doi.org/10.1234/ijsdip.org_2023-Volume-11-Issue-1_Page_264-277
Shiva, K., Etikani, P., Bhaskar, V. V. S. R., Mittal, A., Dave, A., Thakkar, D., Kanchetti, D., & Munirathnam, R. (2024). Anomaly detection in sensor data with machine learning: Predictive maintenance for industrial systems. J. Electrical Systems, 20-10s, 454–462.
Bhaskar, V. V. S. R., Etikani, P., Shiva, K., Choppadandi, A., & Dave, A. (2019). Building explainable AI systems with federated learning on the cloud. Journal of Cloud Computing and Artificial Intelligence, 16(1), 1–14.
Ogeti, P., Fadnavis, N. S., Patil, G. B., Padyana, U. K., & Rai, H. P. (2022). Blockchain technology for secure and transparent financial transactions. European Economic Letters, 12(2), 180-192. http://eelet.org.uk
Vijaya Venkata Sri Rama Bhaskar, Akhil Mittal, Santosh Palavesh, Krishnateja Shiva, Pradeep Etikani. (2020). Regulating AI in Fintech: Balancing Innovation with Consumer Protection. European Economic Letters (EEL), 10(1). https://doi.org/10.52783/eel.v10i1.1810 DOI: https://doi.org/10.52783/eel.v10i1.1810
Krishnateja Shiva, Pradeep Etikani, Vijaya Venkata Sri Rama Bhaskar, Savitha Nuguri, Arth Dave. (2024). Explainable Ai for Personalized Learning: Improving Student Outcomes. International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068, 3(2), 198–207. Retrieved from https://ijmirm.com/index.php/ijmirm/article/view/100
Dave, A., Shiva, K., Etikani, P., Bhaskar, V. V. S. R., & Choppadandi, A. (2022). Serverless AI: Democratizing machine learning with cloud functions. Journal of Informatics Education and Research, 2(1), 22-35. http://jier.org
Dave, A., Etikani, P., Bhaskar, V. V. S. R., & Shiva, K. (2020). Biometric authentication for secure mobile payments. Journal of Mobile Technology and Security, 41(3), 245-259.
Saoji, R., Nuguri, S., Shiva, K., Etikani, P., & Bhaskar, V. V. S. R. (2021). Adaptive AI-based deep learning models for dynamic control in software-defined networks. International Journal of Electrical and Electronics Engineering (IJEEE), 10(1), 89–100. ISSN (P): 2278–9944; ISSN (E): 2278–9952
Narendra Sharad Fadnavis. (2021). Optimizing Scalability and Performance in Cloud Services: Strategies and Solutions. International Journal on Recent and Innovation Trends in Computing and Communication, 9(2), 14–21. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10889
Varun Nakra. (2023). Enhancing Software Project Management and Task Allocation with AI and Machine Learning. International Journal on Recent and Innovation Trends in Computing and Communication, 11(11), 1171–1178. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10684
Arth Dave, Lohith Paripati, Venudhar Rao Hajari, Narendra Narukulla, & Akshay Agarwal. (2024). Future Trends: The Impact of AI and ML on Regulatory Compliance Training Programs. Universal Research Reports, 11(2), 93–101. Retrieved from https://urr.shodhsagar.com/index.php/j/article/view/1257
Joel lopes, Arth Dave, Hemanth Swamy, Varun Nakra, & Akshay Agarwal. (2023). Machine Learning Techniques And Predictive Modeling For Retail Inventory Management Systems. Educational Administration: Theory and Practice, 29(4), 698–706. https://doi.org/10.53555/kuey.v29i4.5645
Varun Nakra, Arth Dave, Savitha Nuguri, Pradeep Kumar Chenchala, Akshay Agarwal. (2023). Robo-Advisors in Wealth Management: Exploring the Role of AI and ML in Financial Planning. European Economic Letters (EEL), 13(5), 2028–2039. Retrieved from https://www.eelet.org.uk/index.php/journal/article/view/1514
Akhil Mittal, Pandi Kirupa Gopalakrishna Pandian. (2023). Adversarial Machine Learning for Robust Intrusion Detection Systems. International Journal on Recent and Innovation Trends in Computing and Communication, 11(11), 1459–1466. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10918
Akhil Mittal, Pandi Kirupa Gopalakrishna Pandian. (2024). Deep Learning Approaches to Malware Detection and Classification. International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068, 3(1), 70–76. Retrieved from https://ijmirm.com/index.php/ijmirm/article/view/94
Mittal, A., & Pandian, P. K. G. (2022). Anomaly detection in network traffic using unsupervised learning. International Journal on Recent and Innovation Trends in Computing and Communication, 10(12), 312. https://www.ijritcc.org
Akhil Mittal. (2024). Machine Learning-Based Phishing Detection: Improving Accuracy and Adaptability. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 587–595. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6524
Pavan Ogeti. (2024). Benefits and Challenges of Deploying Machine Learning Models in the Cloud. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 194–209. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6409
Pavan Ogeti, Narendra Sharad Fadnavis, Gireesh Bhaulal Patil, Uday Krishna Padyana, Hitesh Premshankar Rai. (2022). Blockchain Technology for Secure and Transparent Financial Transactions. European Economic Letters (EEL), 12(2), 180–188. Retrieved from https://www.eelet.org.uk/index.php/journal/article/view/1283
Ogeti, P., Fadnavis, N. S., Patil, G. B., Padyana, U. K., & Rai, H. P. (2023). Edge computing vs. cloud computing: A comparative analysis of their roles and benefits. Volume 20, No. 3, 214-226.
Fadnavis, N. S., Patil, G. B., Padyana, U. K., Rai, H. P., & Ogeti, P. (2020). Machine learning applications in climate modeling and weather forecasting. NeuroQuantology, 18(6), 135-145. https://doi.org/10.48047/nq.2020.18.6.NQ20194
Narendra Sharad Fadnavis. (2021). Optimizing Scalability and Performance in Cloud Services: Strategies and Solutions. International Journal on Recent and Innovation Trends in Computing and Communication, 9(2), 14–21. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10889
Gireesh Bhaulal Patil. (2022). AI-Driven Cloud Services: Enhancing Efficiency and Scalability in Modern Enterprises. International Journal of Intelligent Systems and Applications in Engineering, 10(1), 153–162. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6728
Padyana, U. K., Rai, H. P., Ogeti, P., Fadnavis, N. S., & Patil, G. B. (2023). AI and Machine Learning in Cloud-Based Internet of Things (IoT) Solutions: A Comprehensive Review and Analysis. Integrated Journal for Research in Arts and Humanities, 3(3), 121–132. https://doi.org/10.55544/ijrah.3.3.20
Patil, G. B., Padyana, U. K., Rai, H. P., Ogeti, P., & Fadnavis, N. S. (2021). Personalized marketing strategies through machine learning: Enhancing customer engagement. Journal of Informatics Education and Research, 1(1), 9. http://jier.org
Padyana, U. K., Rai, H. P., Ogeti, P., Fadnavis, N. S., & Patil, G. B. (2023). AI and Machine Learning in Cloud-Based Internet of Things (IoT) Solutions: A Comprehensive Review and Analysis. Integrated Journal for Research in Arts and Humanities, 3(3), 121–132. https://doi.org/10.55544/ijrah.3.3.2 DOI: https://doi.org/10.55544/ijrah.3.3.20
Padyana, U. K., Rai, H. P., Ogeti, P., Fadnavis, N. S., & Patil, G. B. (2024). Predicting disease susceptibility with machine learning in genomics. Letters in High Energy Physics, 2024(20).
Uday Krishna Padyana, Hitesh Premshankar Rai, Pavan Ogeti, Narendra Sharad Fadnavis, & Gireesh Bhaulal Patil. (2024). Server less Architectures in Cloud Computing: Evaluating Benefits and Drawbacks. Innovative Research Thoughts, 6(3), 1–12. https://doi.org/10.36676/irt.v10.i3.1439 DOI: https://doi.org/10.36676/irt.v10.i3.1439
Rai, H. P., Ogeti, P., Fadnavis, N. S., Patil, G. B., & Padyana, U. K. (2024). AI-based forensic analysis of digital images: Techniques and applications in cybersecurity. Journal of Digital Economy, 2(1), 47-61.
Hitesh Premshankar Rai, Pavan Ogeti, Narendra Sharad Fadnavis, Gireesh Bhaulal Patil, & Uday Krishna Padyana. (2024). Integrating Public and Private Clouds: The Future of Hybrid Cloud Solutions. Universal Research Reports, 8(2), 143–153. https://doi.org/10.36676/urr.v9.i4.1320
Hitesh Premshankar Rai, Pavan Ogeti, Narendra Sharad Fadnavis, Gireesh Bhaulal Patil, & Uday Krishna Padyana. (2024). Integrating Public and Private Clouds: The Future of Hybrid Cloud Solutions. Universal Research Reports, 8(2), 143–153. https://doi.org/10.36676/urr.v9.i4.1320 DOI: https://doi.org/10.36676/urr.v9.i4.1320
Ugandhar Dasi. (2024). Developing A Cloud-Based Natural Language Processing (NLP) Platform for Sentiment Analysis and Opinion Mining of Social Media Data. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 165–174. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6406
Dasi, U., Singla, N., Balasubramanian, R., Benadikar, S., & Shanbhag, R. R. (2024). Ethical implications of AI-driven personalization in digital media. Journal of Informatics Education and Research, 4(3), 588-593.
Nikhil Singla. (2023). Assessing the Performance and Cost-Efficiency of Serverless Computing for Deploying and Scaling AI and ML Workloads in the Cloud. International Journal of Intelligent Systems and Applications in Engineering, 11(5s), 618–630. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6730
Challa, S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2019). Investigating the use of natural language processing (NLP) techniques in automating the extraction of regulatory requirements from unstructured data sources. Annals of PharmaResearch, 7(5), 380-387.
Chaturvedi, R., & Sharma, S. (2024). Implementing Predictive Analytics for Proactive Revenue Cycle Management. Journal for Research in Applied Sciences and Biotechnology, 3(4), 74–78. https://doi.org/10.55544/jrasb.3.4.9 DOI: https://doi.org/10.55544/jrasb.3.4.9
Chaturvedi, R., Sharma, S., Pandian, P. K. G., & Sharma, S. (2024). Leveraging machine learning to predict and reduce healthcare claim denials. Zenodo. https://doi.org/10.5281/zenodo.13268360
Ritesh Chaturvedi. (2023). Robotic Process Automation (RPA) in Healthcare: Transforming Revenue Cycle Operations. International Journal on Recent and Innovation Trends in Computing and Communication, 11(6), 652–658. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/11045
Chaturvedi, R., & Sharma, S. (2022). Assessing the Long-Term Benefits of Automated Remittance in Large Healthcare Networks. Journal for Research in Applied Sciences and Biotechnology, 1(5), 219–224. https://doi.org/10.55544/jrasb.1.5.25 DOI: https://doi.org/10.55544/jrasb.1.5.25
Chaturvedi, R., & Sharma, S. (2022). Enhancing healthcare staffing efficiency with AI-powered demand management tools. Eurasian Chemical Bulletin, 11(Regular Issue 1), 675-681. https://doi.org/10.5281/zenodo.13268360
Dr. Saloni Sharma, & Ritesh Chaturvedi. (2017). Blockchain Technology in Healthcare Billing: Enhancing Transparency and Security. International Journal for Research Publication and Seminar, 10(2), 106–117. Retrieved from https://jrps.shodhsagar.com/index.php/j/article/view/1475
Dr. Saloni Sharma, & Ritesh Chaturvedi. (2017). Blockchain Technology in Healthcare Billing: Enhancing Transparency and Security. International Journal for Research Publication and Seminar, 10(2), 106–117. Retrieved from https://jrps.shodhsagar.com/index.php/j/article/view/1475
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 International Journal for Research Publication and Seminar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Re-users must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. This license allows for redistribution, commercial and non-commercial, as long as the original work is properly credited.