OPTIMIZING AI MODEL DEPLOYMENT IN CLOUD ENVIRONMENTS: CHALLENGES AND SOLUTIONS

Authors

  • Savita Nuguri Independent Researcher, USA.
  • Rahul Saoji Independent Researcher, USA.
  • Krishnateja Shiva Independent Researcher, USA
  • Pradeep Etikani Independent Researcher, USA
  • Vijaya Venkata Sri Rama Bhaskar Independent Researcher, USA

DOI:

https://doi.org/10.36676/jrps.v12.i2.1461

Keywords:

Artificial Intelligence Model, Cloud applications, Trends of Cloud Computing, Challenges

Abstract

Among the studies related to the use of artificial intelligence in cloud compting, this research seeks to identify techniues that may help in the effectve implementation of models in cloud based sysems. Some of the main questions that are answered include cost control, working with multiple cloud services, achieving higher speed, preserving the privacy of inforation, and creating conitions for its safe storage, also provider migration. Possible solution instances include autoscaling, model compression, secure enclaves, and contaner for measurability tasks with a range of solutions being consdered and Android-specific solutions being compared. The reference architectural model of cloud and edge systems is described. The findings estabish the effectiveness and need for such methodologes since artificial Inteligence initiatives can be easily and securely implemented and sustained through cloud technologies

References

Boudi, A., Bagaa, M., Pöyhönen, P., Taleb, T. and Flinck, H., 2021. AI-based resource management in beyond 5G cloud native environment. IEEE Network, 35(2), pp.128-135. DOI: https://doi.org/10.1109/MNET.011.2000392

Cloud Computing: Roles and responsibilities – Digital Technology (2017). https://digitaltechnology4u.com/2017/07/18/cloud-computing-roles-and-responsibilities/.

Gohel, P., Singh, P. and Mohanty, M. 2021 Explainable AI: current status and future directions. https://arxiv.org/abs/2107.07045. Grzonka, D., Jakóbik, A., Kołodziej, J. and Pllana, S., 2018. Using a multi-agent system and artificial intelligence for monitoring and improving the cloud performance and security. Future generation computer systems, 86, pp.1106-1117. DOI: https://doi.org/10.1016/j.future.2017.05.046

Hamdia, K.M., Zhuang, X. and Rabczuk, T. 2020 'An efficient optimization approach for designing machine learning models based on genetic algorithm,' Neural Computing & Applications, 33(6), pp. 1923–1933. https://doi.org/10.1007/s00521-020-05035-x. Letaief, K.B., Shi, Y., Lu, J. and Lu, J., 2021. Edge artificial intelligence for 6G: Vision, enabling technologies, and applications. IEEE Journal on Selected Areas in Communications, 40(1), pp.5-36. DOI: https://doi.org/10.1007/s00521-020-05035-x

Minh, D. et al. 2021 'Explainable artificial intelligence: a comprehensive review,' Artificial Intelligence Review, 55(5), pp. 3503–3568. https://doi.org/10.1007/s10462-021-10088-y. DOI: https://doi.org/10.1007/s10462-021-10088-y

Mohammed, S., Fang, W.C. and Ramos, C. 2021 'Special issue on ‘'artificial intelligence in cloud computing,'’' Computing, 105(3), pp. 507–511. https://doi.org/10.1007/s00607-021-00985-z. Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D., Violos, J., Leivadeas, A., Athanasopoulos, N., Mitton, N. and Papavassiliou, S., 2021. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions. Computer Networks, 195, p.108177. DOI: https://doi.org/10.1016/j.comnet.2021.108177

Smith, M. et al. 2021 'From code to bedside: Implementing artificial intelligence using quality improvement methods,' Journal of General Internal Medicine, 36(4), pp. 1061–1066. https://doi.org/10.1007/s11606-020-06394-w. Sun, L., Jiang, X., Ren, H. and Guo, Y., 2020. Edge-cloud computing and artificial intelligence in internet of medical things: architecture, technology and application. IEEE access, 8, pp.101079-101092. DOI: https://doi.org/10.1109/ACCESS.2020.2997831

Wirtz, B.W. 2021 'Artificial intelligence, big data, cloud computing, and internet of things,' in Springer texts in business and economics, pp. 175–245. https://doi.org/10.1007/978-3-031-13086-1_6. DOI: https://doi.org/10.1007/978-3-031-13086-1_6

Ashok : "Choppadandi, A., Kaur, J.,Chenchala, P. K., Nakra, V., & Pandian, P. K. K. G. (2020). Automating ERP Applications for Taxation Compliance using Machine Learning at SAP Labs. International Journal of Computer Science and Mobile Computing, 9(12), 103-112. https://doi.org/10.47760/ijcsmc.2020.v09i12.014

and Resource Optimization in Inventory Identification Tool Using ML. International Journal of Open Publication and Exploration, 8(2), 43-50. https://ijope.com/index.php/home/article/view/127

Kaur, J., Choppadandi, A., Chenchala, P. K., Nakra, V., & Pandian, P. K. G. (2019). AI Applications in Smart Cities: Experiences from Deploying ML Algorithms for Urban Planning and Resource Optimization. Tuijin Jishu/Journal of Propulsion Technology, 40(4), 50-56. DOI: https://doi.org/10.52783/tjjpt.v40.i4.5948

Case Studies on Improving User Interaction and Satisfaction using AI-Enabled Chatbots for Customer Service . (2019). International Journal of Transcontinental Discoveries, ISSN: 3006-628X, 6(1), 29-34. https://internationaljournals.org/index.php/ijtd/article/view/98

Kaur, J., Choppadandi, A., Chenchala, P. K., Nakra, V., & Pandian, P. K. G. (2019). Case Studies on Improving User Interaction and Satisfaction using AI-Enabled Chatbots for Customer Service. International Journal

of Transcontinental Discoveries, 6(1), 29-34. https://internationaljournals.org/index.php/ijtd/article/view/98

Choppadandi, A., Kaur, J., Chenchala, P. K., Kanungo, S., & Pandian, P. K. K. G. (2019). AI-Driven Customer Relationship Management in PK Salon Management System. International Journal of Open Publication and Exploration, 7(2), 28-35. https://ijope.com/index.php/home/article/view/128

Ashok Choppadandi et al, International Journal of Computer Science and Mobile Computing, Vol.9 Issue.12, December- 2020, pg. 103-112. ( Google scholar indexed)

Choppadandi, A., Kaur, J., Chenchala, P. K., Nakra, V., & Pandian, P. K. K. G. (2020). qhttps://doi.org/10.47760/ijcsmc.2020.v09i12.014 DOI: https://doi.org/10.47760/ijcsmc.2020.v09i12.014

Chenchala, P. K., Choppadandi, A., Kaur, J., Nakra, V., & Pandian, P. K. G. (2020). Predictive Maintenance and Resource Optimization in Inventory Identification Tool Using ML. International Journal of Open Publication and Exploration, 8(2), 43-50. https://ijope.com/index.php/home/article/view/127

AI-Driven Customer Relationship Management in PK Salon Management System. (2019). International Journal of Open Publication and Exploration, ISSN: 3006-2853, 7(2), 28-35. https://ijope.com/index.php/home/article/view/128

Tilala, Mitul, and Abhip Dilip Chawda. "Evaluation of Compliance Requirements for Annual Reports in Pharmaceutical Industries." NeuroQuantology 18, no. 11 (November 2020): 138-145. https://doi.org/10.48047/nq.2020.18.11.NQ20244.

Big Data Analytics using Machine Learning Techniques on Cloud Platforms. (2019). International Journal of Business Management and Visuals, ISSN: 3006-2705, 2(2), 54-58. https://ijbmv.com/index.php/home/article/view/76

Big Data Analytics using Machine Learning Techniques on Cloud Platforms. (2019). International Journal of Business Management and Visuals, ISSN: 3006-2705, 2(2), 54-58. https://ijbmv.com/index.php/home/article/view/76

Fadnavis, N. S., Patil, G. B., Padyana, U. K., Rai, H. P., & Ogeti, P. (2020). Machine learning applications in climate modeling and weather forecasting. NeuroQuantology, 18(6), 135-145. https://doi.org/10.48047/nq.2020.18.6.NQ20194

Purohit, M. S. (2012). Resource management in the desert ecosystem of Nagaur district_ An ecological study of land agriculture water and human resources (Doctoral dissertation, Maharaja Ganga Singh University).

Kumar, A. V., Joseph, A. K., Gokul, G. U. M. M. A. D. A. P. U., Alex, M. P., & Naveena, G. (2016). Clinical outcome of calcium, Vitamin D3 and physiotherapy in osteoporotic population in the Nilgiris district. Int J Pharm Pharm Sci, 8, 157-60

Downloads

Published

30-06-2021

How to Cite

Savita Nuguri, Rahul Saoji, Krishnateja Shiva, Pradeep Etikani, & Vijaya Venkata Sri Rama Bhaskar. (2021). OPTIMIZING AI MODEL DEPLOYMENT IN CLOUD ENVIRONMENTS: CHALLENGES AND SOLUTIONS. International Journal for Research Publication and Seminar, 12(2), 159–168. https://doi.org/10.36676/jrps.v12.i2.1461