Engineered Fe3 Triangle for The Rapid and Selective Removal of Aromatic Cationic Pollutants

Authors

  • Yogita Sharma Extension lecturer in chemistry

DOI:

https://doi.org/10.36676/jrps.v14.i5.1431

Keywords:

pollution, contaminants, industrialization, surface water, aromatic

Abstract

Heydays, water pollution is proliferating due to widespread industrialization and in- proper planning of its waste, consisting of aromatic hazards [1]. Most industries dispose of the wastewater in their neighborhood areas of the cities, which is directly in touch with several groundwater sources. The wastewater pollutant (specialties the aromatic ones) can easily enter the underground water which in turn contaminants the surface water and consequently harm the human and environment [2-5].

References

F. Mehrabi, A. Vafaei, M. Ghaedi, A. M. Ghaedi, E. A. Dil, A. Asfaram, Ultrason. Sonochem., 2017, 38, 672. DOI: https://doi.org/10.1016/j.ultsonch.2016.08.012

M. S. Khan, M. Khalid, M. Shahid, Mater. Adv., 2020, 1, 1575. DOI: https://doi.org/10.1039/D0MA00291G

R. Soury, M. Jabli, T. A. Saleh, W. S. Abdul-Hassan, F. Loiseau, C. Philouze,

A. Bujacz, H. Nasri, J. Mol. Liq., 2018, 264, 134.

M. S. Khan, M. Khalid, M. S. Ahmad, M. Shahid, M. Ahmad, Res. Chem. Intermed., 2020, 46, 2985. DOI: https://doi.org/10.1007/s11164-020-04127-6

N. Tka, M. Jabli, T. A. Saleh, G. A. Salman, J. Mol. Liq., 2018, 250, 423. DOI: https://doi.org/10.1016/j.molliq.2017.12.026

V. K. Gupta, A. Nayak Suhas, S. Agarwal, M. Chaudhary, I. Tyagi, J. Mol. Liq., 2014, 190, 215. DOI: https://doi.org/10.1016/j.molliq.2013.11.008

M. Ghaedi, A. M. Ghaedi, E. Negintaji, A. Ansari, A. Vafaei, M. Rajabi, J. Ind. Eng. Chem., 2014, 20, 1793. DOI: https://doi.org/10.1016/j.jiec.2013.08.033

J. G. Speight, Environmental Organic Chemistry for Engineers, Butterworth Heinemann, 2017, pp. 203. DOI: https://doi.org/10.1016/B978-0-12-804492-6.00005-8

K. C. Engvild, Phytochemistry, 1986, 25, 781. DOI: https://doi.org/10.1016/0031-9422(86)80002-4

B. Song, T. Wang, H. Sun, Q. Shao, J. Zhao, K. Song, L. Hao, L. Wang, Z. Guo, Dalton Trans., 2017, 46, 15769. DOI: https://doi.org/10.1039/C7DT03003G

A. Ayar, O. Gezici, M. Kuç ¨ ukosmanoglu, J. Hazard. Mater., 2007, 146, 186. DOI: https://doi.org/10.1016/j.jhazmat.2006.12.009

K. Elass, A. Laachach, A. Alaoui, M. Azzi, Appl. Clay Sci., 2011, 54, 90. DOI: https://doi.org/10.1016/j.clay.2011.07.019

S. Wang, X. Xu, Y. Bai, Y. Ma, J. Zhang, F. Meng, J. Zhao, C. Tang, Sci.

Adv. Mater., 2016, 8, 1020.

T. Wang, P. Zhao, N. Lu, H. Chen, C. Zhang, X. Hou, Chem. Eng. J., 2016,

295, 403.

S. Cinar, U. H. Kaynar, T. Aydemir, S. C. Kaynar, M. Ayvacikli, Int. J. Biol. Macromol., 2017, 96, 459. DOI: https://doi.org/10.1016/j.ijbiomac.2016.12.021

L. Zhang, M. Qin, W. Yu, Q. Zhang, H. Xie, Z. Sun, Q. Shao, X. Guo, L. Hao, Y. Zheng, Z. Guo, J. Electrochem. Soc., 2017, 164, H1086; (b) V. Gomez, M. S. Larrechi, M. P. Callao, Chemosphere, 2007, 69, 1151.

E. Yilmaz, E. Sert, F. S. Atalay, J. Taiwan Inst. Chem. Eng., 2016, 65, 323; S. Wang, Z. H. Zhu, J. Hazard. Mater., 2006, 136, 946.

K. Gong, Q. Hu, L. Yao, M. Li, D. Sun, Q. Shao, B. Qiu, Z. Guo, ACS Sustainable Chem. Eng., 2018, 6, 7283. DOI: https://doi.org/10.1021/acssuschemeng.7b04421

S. S. Tahir, N. Rauf, Chemosphere, 2006, 63, 1842. DOI: https://doi.org/10.1016/j.chemosphere.2005.10.033

J. Huang, Y. Cao, Q. Shao, X. Peng, Z. Guo, Ind. Eng. Chem. Res., 2017, 56, 10689. DOI: https://doi.org/10.1021/acs.iecr.7b02835

L. Zeng, L. Xiao, Y. Long, X. Shi, J. Colloid Interface Sci., 2018, 516, 274. DOI: https://doi.org/10.1016/j.jcis.2018.01.070

S. Xiong, Y. Gong, S. Hu, S. Wu, W. Li, Y. He, J. Mater. Chem. A, 2018, 6, 4752. DOI: https://doi.org/10.1039/C7TA11321H

M. Ashafaq, M. Khalid, M. Raizada, M. S. Ahmad, M. S. Khan, M. Shahid,

M. Ahmad, J. Inorg. Organomet. Polym. Mater., 2020, 30, 4496. DOI: https://doi.org/10.1007/s10904-020-01579-6

M. S. Ahmad, M. Khalid, M. S. Khan, M. Shahid, M. Ahmad, M. Rao, A. Ansari, M. Ashafaq, New J. Chem., 2020, 44, 7998. DOI: https://doi.org/10.1039/D0NJ00605J

J. Xu, W. Xing, H. Wang, W. Xu, Q. Ding, L. Zhao, Analyst, 2016, 141, 2307–2319; W. Li, X. Wu, S. Li, W. Tang, Y. Chen, Appl. Surf. Sci., 2018, 436, 252–262.

W. Ren, J. Gao, C. Lei, Y. Cai, Q. Ni, J. Yao, Chem. Eng. J., 2018, 349, 766– 774. DOI: https://doi.org/10.1016/j.cej.2018.05.143

M. S. Ahmad, M. Khalid, M. S. Khan, M. Shahid, M. Ahmad, J. Struct. Chem., 2020, 61, 533. DOI: https://doi.org/10.1134/S0022476620040058

E. Haque, J. E. Lee, I. T. Jang, Y. K. Hwang, J.-S. Chang, J. Jegal, S. H. Jhung, J. Hazard. Mater., 2010, 181, 535. DOI: https://doi.org/10.1016/j.jhazmat.2010.05.047

T. Shen, J. Luo, S. Zhang, X. Luo, J. Environ. Chem. Eng., 2015, 3, 1372. DOI: https://doi.org/10.1016/j.jece.2014.12.006

X. Luo, X. Fu, Y. Du, J. Guo, B. Li, Microporous Mesoporous Mater., 2017, 237, 268. DOI: https://doi.org/10.1016/j.micromeso.2016.09.032

Pillai, A.S. (2022) Multi-Label Chest X-Ray Classification via Deep Learning. Journal of Intelligent Learning Systems and Applications, 14, 43-56. https://doi.org/10.4236/jilsa.2022.144004 DOI: https://doi.org/10.4236/jilsa.2022.144004

T. Wang, P. Zhao, N. Lu, H. Chen, C. Zhang, X. Hou, Chem. Eng. J., 2016,

295, 403.

S. Luo, J. Wang, Environ. Sci. Pollut. Res. Int., 2018, 25, 5521. DOI: https://doi.org/10.1007/s11356-017-0932-z

X. Li, W. Guo, Z. Liu, R. Wang, H. Liu, Appl. Surf. Sci., 2016, 369, 130. DOI: https://doi.org/10.1016/j.apsusc.2016.02.037

R. Rajak, M. Saraf, A. Mohammad, S. Mobin, J. Mater. Chem. A, 2017, 5, 17998. DOI: https://doi.org/10.1039/C7TA03773B

L. Jin, X. Zhao, X. Qian, M. Dong, J. Colloid Interface Sci., 2018, 509, 245. DOI: https://doi.org/10.1016/j.jcis.2017.09.002

M. S. Khan, M. Khalid, M. S. Ahmad, M. Shahid, M. Ahmad, J. Struct. Chem., 2019, 60, 1833. DOI: https://doi.org/10.1134/S0022476619110180

C. Cabello, M. Pico, F. Maya, M. del Rio, G. Palomino, Chem. Eng. J., 2018,

346, 85.

J. Zhang, F. Li, Q. Sun, Appl. Surf. Sci., 2018, 440, 1219. DOI: https://doi.org/10.1016/j.apsusc.2018.01.258

J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature, 2000, 404, 982. DOI: https://doi.org/10.1038/35010088

C. E. Summer Jr, G. R. Steinmetz, J. Am. Chem. Soc., 1985, 107, 6124. DOI: https://doi.org/10.1021/ja00307a060

S. Ito, K. Inone, M. Mastumoto, J. Am. Chem. Soc., 1982, 104, 6450. DOI: https://doi.org/10.1021/ja00387a050

[42] S. J. Lippard, Angew. Chem., 1988, 100, 353. DOI: https://doi.org/10.1002/ange.19881000306

M. C. Ghosh, S. Mandal, S. K. Chandra, S. E. Gould, Inorg. Chem., 1995, 34, 509. DOI: https://doi.org/10.1021/ic00106a012

C. Stadler, J. Daub, J. K¨ ohler, R. W. Saalfrank, V. Coropceanu, V. Schunemann, C. Ober, A. X. Trautwein, ¨ S. F. Parker, M. Poyraz, T. Inomata,

R. D. Cannon, J. Chem. Soc., Dalton Trans., 2001, 3373.

Y. T. Lui, C. W. Yan, H. S. Guan, Polyhedron, 2003, 22, 3223. DOI: https://doi.org/10.1016/j.poly.2003.07.002

M. Eshel, A. Bino, Inorg. Chim. Acta, 2002, 329, 45. DOI: https://doi.org/10.1016/S0020-1693(01)00793-9

Harton, K. Terrell, J. C. Huffman, C. MacDonald, A. Beatty, S. Li, C. J. O'Connor, J. B. Vincent, Inorg. Chem., 1997, 36, 4875. DOI: https://doi.org/10.1021/ic961247t

M. Anbia, V. Hoseini, S. Sheykhi, J. Ind. Eng. Chem., 2012, 18, 1149. DOI: https://doi.org/10.1016/j.jiec.2012.01.014

H. Duo, H. Tang, J. Ma, X. Lu, L. Wang, X. Liang, New J. Chem., 2019, 43, 15351. DOI: https://doi.org/10.1039/C9NJ03370J

J. A. Ibers and W. C. Hamilton, International Tables for X-ray Crystallography, Kynoch Press, Birmingham, England, 1974, vol. IV. 26; SMART & SAINT Software Reference manuals, Version 6.45, Bruker Analytical X-ray Systems, Inc., Madison, WI, 2003.

G. M. Sheldrick, SADABS, software for empirical absorption correction, Ver. 2.05, University of G¨ ottingen, G¨ ottingen, Germany, 2002.

XPREP, version 5.1, Siemens Industrial Automation Inc., Madison, WI, 1995.

L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 59. DOI: https://doi.org/10.1107/S2053273314022207

K. Iman, M. Shahid, M. Ahmad, Dalton Trans., 2020, 49, 3423. DOI: https://doi.org/10.1039/C9DT04461B

C. C. Vilalta, E. Rumberger, E. K. Brechin, W. Wernsdorfer, K. Folting, E. R. Davidson, D. N. Hendrikson, G. Christou, J. Chem. Soc., Dalton Trans., 2002, 4005.

Downloads

Published

17-07-2024

How to Cite

Sharma, Y. (2024). Engineered Fe3 Triangle for The Rapid and Selective Removal of Aromatic Cationic Pollutants. International Journal for Research Publication and Seminar, 14(5), 166–185. https://doi.org/10.36676/jrps.v14.i5.1431