Deep Reinforcement Learning for Autonomous Systems: Advances in Navigation and Decision-Making

Authors

  • Dr. Naveen Verma Assistant Professor in Computer Science, Dr. B.R. Ambedkar Govt. College Kaithal
  • Manu Jyoti Gupta Assistant Professor in Computer Science , Govt. College for Women Karnal

Keywords:

Deep Reinforcement Learning, Autonomous Systems, Decision-Making

Abstract

Deep reinforcement learning (DRL) has emerged as a powerful paradigm for training autonomous systems to navigate and make decisions in complex environments. recent advances in DRL algorithms and their application to autonomous navigation and decision-making tasks. DRL combines deep learning techniques with reinforcement learning principles to enable agents to learn optimal policies through interaction with their environment. By leveraging neural networks to approximate value functions and policy functions, DRL algorithms can effectively handle high-dimensional state and action spaces, making them well-suited for real-world autonomous systems.

References

• Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.

• Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

• Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

• Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Dieleman, S. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.

• Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., ... & Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In International conference on machine learning (pp. 1928-1937). PMLR.

• Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290.

• Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization. In International conference on machine learning (pp. 1889-1897). PMLR.

• Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26-38.

• Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140-1144.

• Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., ... & Silver, D. (2018). Rainbow: Combining improvements in deep reinforcement learning. arXiv preprint arXiv:1710.02298.

Downloads

Published

31-03-2024

How to Cite

Dr. Naveen Verma, & Manu Jyoti Gupta. (2024). Deep Reinforcement Learning for Autonomous Systems: Advances in Navigation and Decision-Making. International Journal for Research Publication and Seminar, 15(1), 162–166. Retrieved from https://jrps.shodhsagar.com/index.php/j/article/view/1363