Analysis Cyber Crime Data Using K-mean Technique

Authors

  • Mr. SAGAR DAROKAR (Research Scholor, Dept Of Information Technology, Dr. C.V. Raman University Kota, Bilaspur (C.G.), India)
  • DR. NEELAM SAHU (Associate Professor, Dept Of Information Technology, Dr. C.V. Raman University Kota, Bilaspur (C.G.), India)

Keywords:

Cyber Crime, Types of Cyber Crime, Kmean Clustering Algorithm, Python

Abstract

“Data mining is the process of analyzing data from different perspectives and summarizing the results as useful information.” Data Mining is the procedure which includes evaluating and examining large pre-existing database in order to generate new information which may be essential to the organization .The extraction of new information is predicated using the existing database.

References

Hemraj Saini, Yerra Shankar Rao, T.C.Panda, “Cyber-Crimes and theirImpacts: A Review”, International Journalof Engineering Research andApplications(IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue2,

Mar-Apr 2012, pp.202-209

Varun Kumar, NishaRathee,”Knowledge Discoveryfrom Database using an Integration of clustering andClassification”,IJACSA, vol 2 No.3,PP. 29-33,March2011.

Weka – Data Mining Machine Learning Software, http://www.cs.waikato.ac.nz/ml/.

Cheung Y.M. (2003). k-means: A New Generalisedk-means ClusteringAlgorithm. N-H Elsevier Pattern Recognition Letters 24, Vol 24(15), 2883–2893

Kanungo T., Mount D.M., Netanyahu N.S., Piatko C.D., Silverman R.and Wu A.Y. (2002). An Efficient k-means Clustering Algorithm: Analysisand Implementation. IEEE Transactions on Pattern Analysis and MachineIntelligence,Vol. 24, 881-892.

M. Inaba, N. Katoh, and H. Imai, “Applications of WeightedVoronoi Diagrams and Randomization to Variance-Basedk-clustering,” Proc. 10th Ann. ACM Symp. Computational Geometry,pp. 332-339, June 1994.

Tapas Kanungo, Senior Member, IEEE, David M. Mount, Member, IEEE,An Efficient k-Means Clustering Algorithm:Analysis and ImplementationIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 7, JULY 2002

D. Pollard, “A Centeral Limit Theorem for k-means Clustering,”Annals of Probability, vol. 10, pp. 919-926, 1982.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. From data mining to knowledge discovery: An overview. In Advances in Knowledge Discoveryand Data Mining, pp. 1 --34. AAAI Press, Menlo Park, CA, 1996.

Ester M., Kriegel H.-P., Sander J., XuX, “ADensity-Based Algorithm for Discovering Clusters inLarge Spatial Databaseswith Noise”, In: Proc. 2nd Int.Conf. on Knowledge Discovery and Data Mining,

Han Jiawei, Kamber M. Fan Ming, Meng Xiao-Fenget al. Translated. “Data Mining: Conceots and Techniques”, Beijing: China Mechine Press, 200l(inChinese)

Downloads

Published

31-12-2019

How to Cite

Mr. SAGAR DAROKAR, & DR. NEELAM SAHU. (2019). Analysis Cyber Crime Data Using K-mean Technique. International Journal for Research Publication and Seminar, 10(4), 60–64. Retrieved from https://jrps.shodhsagar.com/index.php/j/article/view/1305

Issue

Section

Original Research Article