Stability of Quadratic Functional Equation

Authors

  • Bansal S

Keywords:

Quadratic Functional Equation

Abstract

In 1897, Hensel [1] introduced a normed space which does not have the Archimedean property. It turned out that non-Archimedean spaces have many nice applications (see [2–5]). A valuation is a function | · | from a field K into [0, ∞) such that 0 is the unique element having the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

References

Hensel K: Ubereine news Begrundung der Theorie der algebraischen Zahlen. Jahresber Deutsch Math Verein 1897, 6:83–88.

Deses D: On the representation of non-Archimedean objects. Topol Appl 2005, 153:774–785.

Katsaras AK, Beoyiannis A: Tensor products of non-Archimedean weighted spaces of continuous functions. Georgian Math J 1999, 6:33–44.

.Khrennikov A: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. In Mathematics and it's Applications. Volume 427. Kluwer Academic Publishers, Dordrecht; 1997.

.Nyikos PJ: On some non-Archimedean spaces of Alexandrof and Urysohn. Topol Appl 1999, 91:1–23.

Pinsker AG: Sur une fonctionnelle dans l'espace de Hilbert. C R (Dokl) Acad Sci URSS, n Ser 1938, 20:411–414. Sundaresan K: Orthogonality and nonlinear functionals on Banach spaces. Proc Amer Math Soc 1972, 34:187–19

Gudder S, Strawther D: Orthogonally additive and orthogonally increasing functions on vector spaces. Pacific J Math 1975, 58:427–436 9.Rätz J: On orthogonally additive mappings. Aequationes Math 1985, 28:35–49.

Downloads

Published

31-03-2013

How to Cite

Bansal, S. (2013). Stability of Quadratic Functional Equation. International Journal for Research Publication and Seminar, 4(1), 4–6. Retrieved from https://jrps.shodhsagar.com/index.php/j/article/view/12

Issue

Section

Original Research Article