Multicomponent synthesis of heterocyclic compounds

Authors

  • Pooja Rani Chemistry Department. PhD scholar (KN Modi University Newai Rajasthan)

DOI:

https://doi.org/10.36676/jrps.v11.i3.1184

Keywords:

Ceria nanoparticles, Multicomponent reactions, Heterocycles, Catalyst, Synthesis

Abstract

Rapid and efficient, multicomponent domino reactions (MDRs) are a useful tool for the one-pot synthesis of flexible heterocycles with diverse and complicated structures. Reduced chemical waste, lower starting-material prices, and lower energy and labour requirements are all possible thanks to these reactions. Additionally, the time required for a response may be greatly reduced. The most up-to-date research on multicomponent domino reactions for constructing heterocyclic skeletons with five, six, or seven members, as well as their multicyclic derivatives, is discussed in this Review. In recent years, our group has developed innovative procedures based on the transition-metal-mediated intramolecular addition reaction of heteronucleophiles and stabilised carbon nucleophiles to inactivated alkenes and alkynes. We provide a brief overview of many recent synthetic uses of these novel methods in this paper. Multicomponent reactions involving Pd-mediated intramolecular cyclization followed by carbon-carbon bond formation are the focus here.

References

Passerini, M. Gazz. Chim. Ital. 1921, 51, 126.

Maeda, S.; Komagawa, S.; Uchiyama, M.; Morokuma, K. Angew. Chem., Int. Ed. 2011, 50, 644. DOI: https://doi.org/10.1002/anie.201005336

Kern, O. T.; Motherwell, W. B. Chem. Commun. 2003, 2988. DOI: https://doi.org/10.1039/b310962c

Meinwald, J.; Labana, S. S.; Chadha, M. S. J. Am. Chem. Soc. 1963, 85, 582. DOI: https://doi.org/10.1021/ja00899a034

Kern, O. T.; Motherwell, W. B. Chem. Commun. 2005, 1787.

Ugi, I.; Meyr, R.; Fetzer, U.; Steinbrückner, C. Angew. Chem.1959, 71, 386.

Chéron, N.; Ramozzi, R.; Kaïm, L. E.; Grimaud, L.; Fleurat-Lessard, P. J. Org. Chem. 2012, 77, 1361. DOI: https://doi.org/10.1021/jo2021554

For an example of the U4CR using aqueous solvent, see the following: Pirrung, M. C.; Sarma, K. D. J. Am. Chem. Soc. 2004, 126, 444. DOI: https://doi.org/10.1021/ja038583a

Quast, H.; Aldenkortt, S. Chem.−Eur. J. 1996, 2, 462. DOI: https://doi.org/10.1002/chem.19960020417

Ugi, I. Isonitrile Chemistry; Academic Press: New York, 1971.

White, C. J.; Yudin, A. K. Nat. Chem. 2011, 3, 509. DOI: https://doi.org/10.1038/nchem.1062

Failli, A.; Immer, H.; Götz, M. Can. J. Chem. 1979, 57, 3257. DOI: https://doi.org/10.1139/v79-533

Hili, R.; Rai, V.; Yudin, A. K. J. Am. Chem. Soc. 2010, 132, 2889. DOI: https://doi.org/10.1021/ja910544p

Hili, R.; Yudin, A. K. J. Am. Chem. Soc. 2006, 128, 14772. DOI: https://doi.org/10.1021/ja065898s

Londregan, A. T.; Farley, K. A.; Limberakis, C.; Mullins, P. B.; Piotrowski, D. W. Org. Lett. 2012, 14, 2890. DOI: https://doi.org/10.1021/ol301173m

Scully, C. C. G.; Rai, V.; Poda, G.; Zaretsky, S.; Burns, D. C.; Houliston, R. S.; Lou, T.; Yudin, A. K. Chem.Eur. J. 2012, 18, 15612. DOI: https://doi.org/10.1002/chem.201203266

Robinson, J. A. Acc. Chem. Res. 2008, 41, 1278. DOI: https://doi.org/10.1021/ar700259k

(a) Sahoo, H.; Roccatano, D.; Hennig, A.; Nau, W. M. J. Am. Chem. Soc. 2007, 129, 9762. (b) Arora, P. S.; Ansari, A. Z.; Timothy, P.; Ptashne, M.; Dervan, P. B. J. Am. Chem. Soc. 2002, 124, 13067. (c) Schuler, B.; Lipman, E. A.; Steinbach, P. J.; Kumke, M.; Eaton, W. A. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 2754.

Rotstein, B. H.; Winternheimer, D. J.; Yin, L. M.; Deber, C. M.; Yudin, A. K. Chem. Commun. 2012, 48, 3775. DOI: https://doi.org/10.1039/c2cc16027g

(a) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Science 1994, 266, 776. (b) Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338.

Downloads

Published

30-09-2020

How to Cite

Pooja Rani. (2020). Multicomponent synthesis of heterocyclic compounds. International Journal for Research Publication and Seminar, 11(3), 223–233. https://doi.org/10.36676/jrps.v11.i3.1184

Issue

Section

Original Research Article