
© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

A Review on multithreading processes and threads in

multiple cores CPU

1Rupali, Research Scholar, Department of CSA, CDLU Sirsa
2Ms. Shailja kumari. Assistant Professor , Department of CSA, CDLU Sirsa, SSK.88@rediffmail.com

ABSTRACT: The objective of our research is to analyze
job handling process of CPU in different circumstances.
Here we would analyze how CPU reacts in case of single
task & in case when it switches among multiple tasks &
how multiple task are managed as thread within a multi-core
processor to execute multiple processes or threads concurrently, appropriately supported by
operating system. This approach differs from multiprocessing, as with multithreading processes
& threads have to share resources of a single or multiple cores: computing units, CPU caches, &
translation lookaside bufferA scheduler may aim at one of several goals, for example,
maximizing throughput, minimizing response time or minimizing latency, maximizing fairness
(equal CPU time to each process, or more generally appropriate times according to priority &
workload of each process). All these goals often conflict thus a scheduler would implement a
suitable compromise. Preference is given to any one of concerns mentioned above, depending
upon user's needs & objectives.

Keywords: Thread, TLB,CPU, Throughput, scheduler, multithreading, SMT

[1] INTRODUCTION

CPU is electronic circuitry within a
computer that carries out instructions of a
computer program by performing basic
arithmetic, logical, control & input/output
(I/O) operations specified by instructions.
term has been used in computer industry at
least since early 1960s. Traditionally, term
CPU refers to a processor, more specifically
to its processing unit & control unit (CU),
distinguishing these core elements of a
computer from external components such as
main memory & I/O circuitry.
The form, design & implementation of
CPUs have changed over course of their
history, but their fundamental operation
remains almost unchanged. Principal
components of a CPU include arithmetic
logic unit that performs arithmetic & logic

operations, processor registers that supply
operands to ALU & store results of ALU

operations, & a control unit that fetches
instructions from memory & executes them
by directing coordinated operations of ALU,
registers & other components.
Most modern CPUs are microprocessors,
meaning they are contained on a single
integrated circuit (IC) chip. An IC that
contains a CPU may also contain memory,
peripheral interfaces, & other components of
a computer; such integrated devices are
variously called microcontrollers or systems
on a chip. Some computers employ a multi-
core processor, which is a single chip
containing two or more CPUs called
"cores"; in that context, single chips are
sometimes referred to as "sockets".Array
processors or vector processors have

mailto:SSK.88@rediffmail.com

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

multiple processors that operate in parallel,
with no unit considered central.

MULTITHREADING

The multithreading paradigm has become
more popular as efforts to further exploit
instruction-level parallelism have stalled
since late 1990s. This allowed concept of
throughput computing to re-emerge from
more specialized field of transaction
processing; even though it is very difficult to
further speed up a single thread or single
program, most computer systems are
actually multitasking among multiple
threads or programs. Thus, techniques that
improve throughput of all tasks result within
overall performance gains.

Types of multithreading

Block multithreading

The simplest type of multithreading occurs
when one thread runs until it is blocked by
an event that normally would create a long-
latency stall. Such a stall might be a cache
miss that has to access off-chip memory,
that might take hundreds of CPU cycles for
data to return. Instead of waiting for stall to
resolve, a threaded processor would switch
execution to another thread that was ready to
run. Only when data for previous thread had
arrived, would previous thread be placed
back on list of ready-to-run threads.

For example:

1. Cycle i: instruction j from thread A is
issued.

2. Cycle i + 1: instruction j + 1 from
thread A is issued.

3. Cycle i + 2: instruction j + 2 from
thread A is issued, that is a load

instruction that misses within all
caches.

4. Cycle i + 3: thread scheduler
invoked, switches to thread B.

5. Cycle i + 4: instruction k from thread
B is issued.

6. Cycle i + 5: instruction k + 1 from
thread B is issued.

2.LITERATURE REVIEW

Yeh-Ching Chung wrote on “Applications

& Performance Analysis of A Compile-

Time Optimization Approach for List

Scheduling Algorithms on Distributed

Memory Multiprocessors”

They have proposedacompile-time
optimization approach, bottom-up top-down

duplication heuristic (BTDH), for static
scheduling of directed+cyclic graphs

(DAGS) on distributed memory

multiprocessors (DMMs). In this paper, they
discuss applications of BTDH for list

scheddhg algorithms (LSAs). There are two
ways to use BTDH for LSAs.BTDHcan be
used with aLSAto form a new scheduling

algorithm (LSA/BTDH). It could be usedas
apure optimization algorithm for a LSA
(LSA-BTDH). We have applied BTDH with
two well known LSAs, highest level first

with estimated time (HLFET) & earlier

taskfirst (ETF) heuristics. We have
performed extensive simulation to study
performance of BTDH for LSAs. Three
parameters, graph parallelism (GP) of a
DAG, ratio of average communication cost
to average computation cost (CCR) of a
DAG & number(PN) of a
DMM,aresimulated. From sunulation, they
have following conclusions. Given a DAG,
GP of DAG could accurately predict
number of processors to be used such that a
good scheduling length & a good resource
utilization (or efficiency) could be achieved
.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

Ishfaq Ahmad1 & Yu-Kwong Kwok2

wrote on “On Parallelizing

Multiprocessor Scheduling Problem”

Existing heuristics for scheduling a node &
edge weighted directed task graph to
multiple processors could produce
satisfactory solutions but incur high time
complexities that tend to exacerbate within
more realistic environments with relaxed
assumptions. Consequently, these heuristics
do not scale well & cannot handle problems
of moderate sizes. A natural approach to
reducing complexity while aiming for a
similar or potentially better solution is to
parallelize scheduling algorithm. This could
be done by partitioning task graphs &
concurrently generating partial schedules for
partitioned parts, that are then concatenated
to obtain final schedule. problem, however,
is nontrivial as there exists dependencies
among nodes of a task graph that must be
preserved for generating a valid schedule.
Moreover, time clock for scheduling is
global for all processors (that are executing
parallel scheduling algorithm), making
inherent parallelism invisible. In this paper,
they introduce a parallel algorithm that is
guided by a systematic partitioning of task
graph to perform scheduling using multiple
processors. algorithm schedules both tasks
& messages, & is suitable for graphs with
arbitrary computation & communication
costs, & is applicable to systems with
arbitrary network topologies using
homogeneous or heterogeneous processors.
We have implemented algorithm on Intel
Paragon & compared it with three closely
related algorithms. experimental results
indicate that our algorithm yields higher
quality solutions while using an order of
magnitude smaller scheduling times.
algorithm also exhibits an interesting trade-

off between solution quality & speedup
while scaling well with problem size.

Maruf Ahmed, Sharif M. H. Chowdhury

wrote on List Heuristic Scheduling

Algorithms for Distributed Memory

Systems with Improved Time Complexity

They present a compile time list heuristic
scheduling algorithm called Low Cost

Critical Path algorithm (LCCP) for
distributed memory systems. LCCP has low
scheduling cost for both homogeneous &
heterogeneous systems. In some recent
papers list heuristic scheduling algorithms
keep their scheduling cost low by using a
fixed size heap & a FIFO, where heap
always keeps fixed number of tasks &
excess tasks are inserted within FIFO. When
heap has empty spaces, tasks are inserted
within it from FIFO. Best known list
scheduling algorithm based on this strategy
requires two heap restoration operations, one
after extraction & another after insertion.
Our LCCP algorithm improves on this by
using only one such operation for both
extraction & insertion, that within theory
reduces scheduling cost without
compromising scheduling performance. In
our experiment they compare LCCP with
other well known list scheduling algorithms
& it shows that LCCP is fastest among all.

Wayne F. Boyer wrote on “Non-

evolutionary algorithm for scheduling

dependent tasks within distributed

heterogeneous computing environments”

The Problem of obtaining an optimal
matching & scheduling of interdependent
tasks within distributed heterogeneous
computing (DHC) environments is well
known to be an NP-hard problem. In a DHC
system, task execution time is dependent on
machine to which it is assigned & task
precedence constraints are represented by a

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

directed acyclic graph. Recent research
within evolutionary techniques has shown
that genetic algorithms usually obtain more
efficient schedules that other known
algorithms.

[3] RESEARCH METHODOLOGY

In computing, scheduling is method by
which work specified by some means is
assigned to resources that complete work.
work may be virtual computation elements
such as threads, processes or data flows, that
are within turn scheduled onto hardware
resources such as processors, network links
or expansion cards.

A scheduler is what carries out scheduling
activity. Schedulers are often implemented
so they keep all computer resources busy (as
within load balancing), allow multiple users
to share system resources effectively, or to
achieve a target quality of service.
Scheduling is fundamental to computation
itself, & an intrinsic part of execution model
of a computer system; concept of scheduling
makes it possible to have computer
multitasking with a single central processing
unit (CPU).

In advanced packet radio wireless networks
such as HSDPA (High-Speed Downlink
Packet Access) 3.5G cellular system,
channel-dependent scheduling may be
used to take advantage of channel state
information. If channel conditions are
favourable, throughput & system spectral
efficiency may be increased.
In even more advanced systems such as
LTE, scheduling is combined by channel-
dependent packet-by-packet dynamic
channel allocation, or by assigning OFDMA
multi-carriers or other frequency-domain
equalization components to users that best
could utilize them.

Highly simplified structure of Linux kernel:
process scheduler, I/O scheduler, packet

scheduler & other subsystems

Operating
System

Preemption Algorithm

Amiga OS Yes Prioritized
round-robin
scheduling

FreeBSD Yes Multilevel
feedback queue

Linux

kernel

before 2.6.0

Yes Multilevel
feedback queue

Linux

kernel

2.6.0–2.6.23

Yes O(1) scheduler

Linux

kernel after

2.6.23

Yes Completely
Fair Scheduler

Mac OS

pre-9

None Cooperative
scheduler

Mac OS 9 Some Preemptive
scheduler for
MP tasks, &
cooperative for
processes &
threads

Mac OS X Yes Multilevel
feedback queue

NetBSD Yes Multilevel
feedback queue

Solaris Yes Multilevel
feedback queue

Windows

3.1x

None Cooperative
scheduler

Windows

95, 98, Me

Half Preemptive
scheduler for
32-bit
processes, &
cooperative for
16-bit
processes

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

Windows

NT

(including

2000, XP,

Vista, 7, &

Server)

Yes Multilevel
feedback queue

4. Challenges within research

Multiple threads could interfere with
each other when sharing hardware
resources such as caches or
translation lookaside buffers (TLBs).
As a result, execution times of a
single thread are not improved but
could be degraded, even when only
one thread is executing, due to lower
frequencies or additional pipeline
stages that are necessary to
accommodate thread-switching
hardware.
Overall efficiency varies; Intel
claims up to 30% improvement with
its HyperThreading technology,[1]
while a synthetic program just
performing a loop of non-optimized
dependent floating-point operations
actually gains a 100% speed
improvement when run within
parallel. On other hand, hand-tuned
assembly language programs using
MMX or Altivec extensions &
performing data pre-fetches (as a
good video encoder might) do not
suffer from cache misses or idle
computing resources. Such programs
therefore do not benefit from
hardware multithreading & could
indeed see degraded performance
due to contention for shared
resources.
From software standpoint, hardware
support for multithreading is more
visible to software, requiring more
changes to both application programs

& operating systems than
multiprocessing. Hardware
techniques used to support
multithreading often parallel
software techniques used for
computer multitasking of computer
programs. Thread scheduling is also
a major problem within
multithreading.

5. PROPOSED WORK

Existing gang-h algorithm

input :

n jobs Jj (uj , vj), 1 ≤ j ≤ n ;

m: number of processors;

output:

Slice lengths S(s), s = 1, 2, . . .;

Scheduled jobs j in slice s: Sched(s,j) ∈ {0,
1}, 1 ≤ j ≤ n ;

List=Sort(J1, . . . , Jn) ; /* Jobs are sorted in
non increasing order of vj */

s = 0 ; /* Number of slices */

rj := uj ∀j = 1 · · · n ; /* Job remaining
execution times rj */

while ∃j, rj > 0, 1 ≤ j ≤ n do

/* create a new slice */

s = s + 1 ; /* Number of slices */

K = m ; /* Remaining processors */

` = ∞ ; /* Slice length upper bound */

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

Sched(s,j)=0 1 ≤ j ≤ n ; /* Empty Slice */

foreach j ∈ List do

/* For each job j in priority List */

if vj ≤ K then

/* job j is schedulable in current slice */

Sched(s,j)=1;

` = min(`, rj); /* update slice length */

K = K − vj ; /* remaining processors */

end

end

S(s)=l; /* Slice length */

for j = 1 . . . n do

/* Update remaining execution times */

if Sched(s, j) then

rj = rj − `;

end

end

end

Performance of above algorithm could be
improved in two ways :

1. By customizing hardware
2. By customizing existing algorithm

Hardware Customization consist of
following

1. Addition of Multi-core
processors

2. Addition of Primary Memory
3. Addition of Cache

Customization of existing

algorithm

1. Create clusters of Data to be
fetch

2. Data at nearest memory location
could be clustered (grouped).

3. In this way scheduled processes
may be grouped & processed in
Batches.

4. By Batch processing
performance would be better as
latency time of cpu would reduce

Proposed work

In this work we will group jobs in cluster for
batch processing.

6. SCOPE OF RESEARCH

Number of job can run simultaneously of
computer and all these job put burden on
CPU. The objective of research is to
minimize the burden of CPU and enhance its
capability by concentration of similar jobs
clustered in cache so that the processing
time get reduced.
If a thread gets a lot of cache misses, other
threads could continue taking advantage of
unused computing resources, that may lead
to faster overall execution as these resources
would have been idle if only a single thread
were executed. Also, if a thread cannot use
all computing resources of CPU (because
instructions depend on each other's result),
running another thread may prevent those
resources from becoming idle. If several
threads work on same set of data, they could
actually share their cache, leading to better
cache usage or synchronization on its
values.
REFERENCE

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

1. Remzi H. Arpaci-Dusseau; Andrea

C. Arpaci-Dusseau (January 4,

2015). "Chapter 7: Scheduling:

Introduction, Section 7.6: A New

Metric: Response Time". Operating

Systems: Three Easy Pieces (PDF).

p. 6. Retrieved February 2, 2015.
2. Paul Krzyzanowski (2014-02-19).

"Process Scheduling: Who gets to

run next?". cs.rutgers.edu. Retrieved

2015-01-11.
3. Abraham Silberschatz, Peter Baer

Galvin & Greg Gagne (2013).

Operating System Concepts 9. John

Wiley & Sons,Inc. ISBN 978-1-118-

06333-0.
4. Here is C-code for FCFS
5. Early Windows at Wayback Machine
6. Sriram Krishnan. "A Tale of Two

Schedulers Windows NT & Windows

CE".
7. Inside Windows Vista Kernel: Part 1,

Microsoft Technet
8. "Vista Kernel Improvements".
9. "Technical Note TN2028 - Threading

Architectures".
10. "Mach Scheduling & Thread

Interfaces".
11. http://www.ibm.com/developerworks

/aix/library/au-
aix5_cpu/index.html#N100F6

12. Molnár, Ingo (2007-04-13). "[patch]

Modular Scheduler Core &

Completely Fair Scheduler [CFS]".

linux-kernel (Mailing list).

