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Abstract: In computer architecture, multithreading is ability of a central 

processing unit (CPU) or a single core within a multi-core processor to 

implement multiple processes or threads concurrently, appropriately 

supported by operating system. it plea differs from multiprocessing, as 

within  multithreading processes & threads have to share resources of a 

single or multiple cores: computing units, CPU caches, & translation 

lookaside buffer (TLB). Multiprocessing systems include multiple complete processing, multithreading targets to 

increase utilization of a single core by using thread-level as well as instruction stage parallelism. As two approaches 

are complementary, they are sometimes combined within systems within  multiple multithreading CPUs & within 

CPUs within  multiple multithreading cores. A scheduler might   aim at one of several goals, for example, 

maximizing throughput, minimizing response time, or minimizing latency, maximizing fairness. In practice, these 

goals often conflict, thus a scheduler would implement a acceptable agreement. Preference is given to any one of 

concerns mentioned above, depending upon user's needs & objectives. Objective of research is to enhance efficiency 

of scheduling dependent task using enhanced multithreading. 
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[1]Introduction 

 

The multithreading paradigm had been  become more 

favoured as efforts to further use instruction-level 

parallelism have stalled since late 1990s. it allowed 

concept of throughput computing to re-emerge from 

more generalized field of transaction processing; 

despite  fact that it is very difficult to additionally 

speed up a single thread or one program, most 

computer systems are literally multitasking among 

multiple threads or programs. Thus, methods that 

improve throughput of all tasks result within overall 

performance gains. 

Types of multithreading 

Block multithreading 

The simplest type of multithreading happens when 

one thread executes until it is blocked by an event 

that normally would create a big latency stall. Such a 

stall might   be a cache miss that had been  to access 

off-chip memory, that might take hundreds of CPU 

cycles for data to return. Instead of waiting for stall to 

resolve, a threaded processor will switch execution to 

another thread that was ready to run. Only when data 

for previous thread had arrived, would previous 

thread be placed back on list of ready-to-run threads. 

For example: 

1. Cycle i: instruction j from thread A is issued. 

2. Cycle i + 1: instruction j + 1 from thread A 

is issued. 

3. Cycle i + 2: instruction j + 2 from thread A 

is issued, that is a load instruction that 

misses within all caches. 

4. Cycle i + 3: thread scheduler invoked, 

switches to thread B. 

5. Cycle i + 4: instruction k from thread B is 

issued. 

6. Cycle i + 5: instruction k + 1 from thread B 

is issued. 

Conceptually, it is similar to cooperative multi-

tasking used within real-time operating systems, 

within which tasks voluntarily give up 

implementation time when they need to wait upon 

some type of event. it type of multithreading is 

known as block, cooperative or coarse-grained 

multithreading.The target of multithreading hardware 

support  to allow quick switching between a blocked 

thread & another thread ready to run. To achieve it 

goal, hardware cost is to replicate program visible 

registers, as well as some processor control registers 

(such as program counter).change efficiently between 

active threads, Such as to quickly switch between two 

threads, register hardware needs to be represented 

twice. 

Additional hardware support for multithreading 

allows thread switching to be done within one CPU 
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cycle, bringing performance enhancements. Also, 

Some extra hardware allows each thread to behave as 

if it were executing alone & not sharing any hardware 

resources within  other threads, minimizing amount 

of software changes needed within application & 

operating system to support multithreading. 

Many families of microcontrollers & embedded 

processors have multiple register banks to enable 

quick context switching for interrupts. Such schemes 

could be considered a type of block multithreading 

among user program thread & interrupt threads. 

 

Interleaved multithreading 

The purpose of interleaved multithreading is to 

exclude all data dependency stalls from execution 

pipeline. Since one thread is comparatively 

independent from other threads, there is very few 

chance of one instruction within one pipelining stage 

needing an output from an older instruction within 

pipeline. Conceptually, it is similar to preemptive 

multitasking used within operating systems; an 

analogy would be that time slice given to each active 

thread is one CPU cycle. 

For example: 

1. Cycle i + 1: an instruction from thread B is 

issued. 

2. Cycle i + 2: an instruction from thread C is 

issued. 

This kind of multithreading was first called barrel 

processing, within which staves of a barrel represent 

pipeline stages & their executing threads.Fine-

grained, preemptive,Interleaved or time-sliced 

multithreading are more modern terminology. 

In addition to hardware costs discussed within block 

type of multithreading, interleaved multithreading 

had been  an further cost of each pipeline stage 

tracking thread ID of instruction it is processing. 

Also, since there are more threads being executed 

simultaneously within pipeline, shared resources such 

as caches & TLBs need to be larger to avoid 

thrashing between different threads. 

Simultaneous multithreading 

The most advanced kind of multithreading applies to 

superscalar processors. In contrast a normal 

superscalar processor generates multiple instructions 

from a single thread each CPU cycle, within 

simultaneous multithreading (SMT) a superscalar 

processor could issue instructions from multiple 

threads each CPU cycle. identifying that any single 

thread had been  a limited number of instruction-level 

parallelism, it type of multithreading tries to use 

parallelism available beyond multiple threads to 

decrease waste associated within  unexploited issue 

slots. 

For example: 

1. Cycle i: instructions j&j + 1 from thread A& 

instruction k from thread B are 

simultaneously issued. 

2. Cycle i + 1: instruction j + 2 from thread A, 

instruction k + 1 from thread B, & 

instruction m from thread C are all 

simultaneously issued. 

3. Cycle i + 2: instruction j + 3 from thread A& 

instructions m + 1 &m + 2 from thread C are 

all simultaneously issued. 

To distinguish other types of multithreading from 

SMT, term "temporal multithreading" is used to 

denote when instructions from only one thread could 

be issued at a time. 

In addition to hardware costs discussed for 

interleaved multithreading, SMT had been  additional 

cost of each pipeline stage tracking thread ID of each 

instruction being processed. Again, shared resources 

such as caches & TLBs have to be sized for large 

number of active threads being processed. 

Implementations include DEC (later Compaq) EV8 

(not completed), IBM POWER5, Intel Hyper-

Threading, Sun Microsystems UltraSPARC T2, 

CRAY XMT, &MIPS MT. 

Implementation specifics 

A major area of research is thread scheduler that must 

quickly choose among list of ready-to-run threads to 

implement next as well as maintain ready-to-run & 

stalled thread lists. An important subtopic is different 

thread priority schemes that could be used by 

scheduler.  thread scheduler might be implemented 

totally within software, totally within hardware, or as 

a hardware/software combination. 

Another area of research is what type of events would 

cause a thread switch: cache misses, inter-thread 

communication, DMA completion, etc. 

If multithreading scheme replicates all of software-

visible state, including privileged control registers & 

TLBs, then it provides virtual machines to be created 

for each thread. it allows each thread to run its own 

operating system on same processor. On other hand, 

if only user-mode state is saved, then less hardware is 

required, that would allow more threads to be active 

at one time for same die area or cost. 

 
[2] LITERATURE REVIEW 

 

Yeh-Ching Chung wrote on “Performance 

Analysisand Applications of A Compile-Time 

Optimization Approach for List Scheduling 
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Algorithms on Distributed Memory 

Multiprocessors” 

They  have reportedacompile-time optimization 

approach, bottom-up top-down duplication heuristic 

(BTDH), to static scheduling of directed+cyclic 

graphs (DAGS) on distributed memory 

multiprocessors (DMMs). In it paper, they discuss 

applications of BTDH for list scheddhg algorithms 

(LSAs). There are two ways to use BTDH for 

LSAs.BTDHcan be used within  aLSAto form a new 

scheduling algorithm (LSA/BTDH). It could be 

usedas apure optimization algorithm for a LSA 

(LSA-BTDH). We have used BTDH within  two 

already knownLSAs, highest level first within  

estimated time (HLFET) &earlier taskfirst (ETF) 

heuristics. We have calculate extensive simulation to 

study performance of BTDH for LSAs. Three 

parameters, ratio of average communication cost to 

average computation cost (CCR) of a DAG, graph 

parallelism (GP) of a DAG& number(PN) of a 

DMM,aresimulated. From sunulation, they have 

following conclusions. Given a DAG, GP of  DAG 

could accurately predict number of processors to be 

used such that a good  scheduling length & a good 

resource utilization (or efficiency) could be achieved 

. 

Ishfaq Ahmad1 & Yu-Kwong Kwok2 wrote on 

“On Parallelizing Multiprocessor Scheduling 

Problem” 
Beingheuristics for scheduling a node & edge 

weighted directed task graph to multiple processors 

could produce satisfactory solutions but incur high 

time complexities that tend to exacerbate within more 

realistic environments within  relaxed assumptions. 

Accordingly, these heuristics do not scale well & 

cannot handle problems of normal sizes. A natural 

approach to reducing complexity while aiming for a 

similar or potentially better solution is to parallelize 

scheduling algorithm. it could be done by partitioning 

task graphs & concurrently generating partial 

schedules for partitioned parts that are then 

concatenated to obtain final schedule.  problem, 

however, is nontrivial as there existsdependencies 

among nodes of a task graph that must be preserved 

for generating a valid schedule. Moreover, time clock 

for scheduling is global for all processors (that are 

executing parallel scheduling algorithm), making 

inherent parallelism invisible. In it paper, they 

introduce a parallel algorithm that is guided by a 

systematic partitioning of task graph to perform 

scheduling using multiple processors.  algorithm 

schedules both tasks & messages, & is suitable for 

graphs within  arbitrary computation & 

communication costs, & is applicable to systems 

within  arbitrary network topologies using 

homogeneous or heterogeneous processors. We have 

executed algorithm on Intel Paragon & compared it 

within  three closely attached algorithms.  

experimental results indicate that our algorithm 

yields higher quality solutions while using an order 

of magnitude less scheduling times.  algorithm also 

exhibits an interesting trade-off between solution 

quality & speedup while scaling well within  problem 

size. 

 

Maruf Ahmed, Sharif M. H. Chowdhury wrote on 

List Heuristic Scheduling Algorithms for 

Distributed Memory Systems within  Improved 

Time Complexity 

They present a compile time list heuristic scheduling 

algorithm known asLow Cost Critical Path algorithm 

(LCCP) for distributed memory systems. LCCP had 

been  low scheduling cost for both homogeneous & 

heterogeneous systems. In some recent papers list 

heuristic scheduling algorithms keep their scheduling 

rate low by using a fixed size heap & a FIFO, where 

heap always keeps fixed number of tasks & excess 

tasks are inserted within FIFO. When heap had been  

empty spaces, tasks are inserted within it from FIFO. 

Best known list scheduling algorithm depends on it 

strategy requires two heap restoration operations, one 

after extraction & another after insertion. Our LCCP 

algorithm enhances on it by using only one such 

operation for both extraction & insertion, that within 

theory reduces scheduling cost without 

compromising scheduling performance. In our 

experiment they compare LCCP within  other well 

known list scheduling algorithms & it shows that 

LCCP is fastest among all. 

 

Wayne F. Boyer wrote on “Non-evolutionary 

algorithm for scheduling dependent tasks within 

distributed heterogeneous computing 

environments” 

The Problem of finding thebest matching & 

scheduling of interdependent tasks within distributed 

heterogeneous computing (DHC) environments is 

generally known to be an NP-hard problem. In a 

DHC system, task execution time is dependent on 

machine to which it is assigned & task precedence 

constraints are represented by a directed acyclic 

graph. Recent research within evolutionary 

techniques had been  shown that genetic algorithms 

usually obtain more efficient schedules that other 

known algorithms. 

We propose a non-evolutionary random scheduling 

(RS) algorithm for efficient matching & scheduling 

of inter-dependent tasks within a DHC system. RS is 
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a succession of randomized task orderings & a 

heuristic mapping from task order to schedule. 

Randomized task ordering is effectively a topological 

sort where outcome might   be any possible task 

order for which task precedent constraints are 

maintained. A detailed comparison to existing 

evolutionary techniques (GA & PSGA) shows 

proposed algorithm is less complex than evolutionary 

techniques, computes schedules within less time, & 

requires less memory & fewer tuning parameters. 

Simulation results show that average schedules 

produced by RS are approximately as efficient as 

PSGA schedules for all cases studied & clearly more 

efficient than PSGA for certain cases. 

 

[3]RESEARCH METHODOLOGY 

In computing, scheduling is method by which work 

specified by some means is assigned to resources that 

complete work.  work might   be virtual computation 

elements such as threads, processes or data flows, 

that are within turn scheduled onto hardware 

resources such as processors, network links or 

expansion cards. 

A scheduler is what carries out scheduling activity. 

Schedulers are often implemented so they keep all 

computer resources busy (as within load balancing), 

allow multiple users to share system resources 

effectively, or to achieve a target quality of service. 

Scheduling is fundamental to computation itself, & 

an intrinsic part of execution model of a computer 

system; concept of scheduling makes it possible to 

have computer multitasking within  a single central 

processing unit (CPU). 

A scheduler might   aim at one of several goals, for 

example, maximizing throughput (total amount of 

work completed per time unit), minimizing response 

time (time from work becoming enabled until first 

point it begins execution on resources), or 

minimizing latency (the time between work 

becoming enabled & its subsequent completion), 

maximizing fairness (equal CPU time to each 

process, or more generally appropriate times 

according to priority & workload of each process). In 

practice, these goals often conflict (e.g. throughput 

versus latency), thus a scheduler would implement a 

suitable compromise. Preference is given to any one 

of concerns mentioned above, depending upon user's 

needs & objectives. 

In real-time environments, such as embedded systems 

for automatic control within industry (for example 

robotics), scheduler also must ensure that processes 

could meet deadlines; it is crucial for keeping system 

stable. Scheduled tasks could also be distributed to 

remote devices across a network & managed through 

an administrative back end. 

Scheduling disciplines are algorithms used for 

distributing resources among parties that 

simultaneously & asynchronously request them. 

Scheduling disciplines are used within routers (to 

handle packet traffic) as well as within operating 

systems (to share CPU time among both threads & 

processes), disk drives (I/O scheduling), printers 

(print spooler), most embedded systems, etc. 

The main purposes of scheduling algorithms are to 

minimize resource starvation & to ensure fairness 

amongst parties utilizing resources. Scheduling deals 

within  problem of deciding that of outstanding 

requests is to be allocated resources. There are 

several different scheduling algorithms. In it section, 

we introduce several of them. 

In packet-switched computer networks & other 

statistical multiplexing, notion of a scheduling 

algorithm is used as an alternative to first-come first-

served queuing of data packets. 

The simplest best-effort scheduling algorithms are 

round-robin, fair queuing (a max-min fair scheduling 

algorithm), proportionally fair scheduling & 

maximum throughput. If differentiated or guaranteed 

quality of service is offered, as opposed to best-effort 

communication, weighted fair queuing might   be 

utilized. 

In advanced packet radio wireless networks such as 

HSDPA (High-Speed Downlink Packet Access ) 

3.5G cellular system, channel-dependent 

scheduling might   be used to take advantage of 

channel state information. If channel conditions are 

favourable, throughput & system spectral efficiency 

might   be increased. In even more advanced systems 

such as LTE, scheduling is combined by channel-

dependent packet-by-packet dynamic channel 

allocation, or by assigning OFDMA multi-carriers or 

other frequency-domain equalization components to 

users that best could utilize them. 
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Fig 1 System Call interface 

Highly simplified structure of Linux kernel: process 

scheduler, I/O scheduler, packet scheduler& other 

subsystems 

Operating 

System 

Preemption Algorithm 

Amiga OS Yes Prioritized round-

robin scheduling 

FreeBSD Yes Multilevel feedback 

queue 

Linux kernel 

before 2.6.0 

Yes Multilevel feedback 

queue 

Linux kernel 

2.6.0–2.6.23 

Yes O(1) scheduler 

Linux kernel 

after 2.6.23 

Yes Completely Fair 

Scheduler 

Mac OS pre-9 None Cooperative 

scheduler 

Mac OS 9 Some Preemptive 

scheduler for MP 

tasks, & 

cooperative for 

processes & threads 

Mac OS X Yes Multilevel feedback 

queue 

NetBSD Yes Multilevel feedback 

queue 

Solaris Yes Multilevel feedback 

queue 

Windows 3.1x None Cooperative 

scheduler 

Windows 95, 

98, Me 

Half Preemptive 

scheduler for 32-bit 

processes, & 

cooperative for 16-

bit processes 

Windows NT 

(including 

2000, XP, 

Vista, 7, & 

Server) 

Yes Multilevel feedback 

queue 

 

[4] CHALLENGES WITHIN RESEARCH 

Multiple threads could interfere within  each other 

when sharing hardware resources such as caches or 

translation lookaside buffers (TLBs). As a result, 

execution times of a single thread are not improved 

but could be degraded, even when only one thread is 

executing, due to lower frequencies or additional 

pipeline stages that are necessary to accommodate 

thread-switching hardware. 

Overall efficiency varies; Intel claims up to 30% 

improvement within its HyperThreading 

technology,
[1]

 while a synthetic program just 

performing a loop of non-optimized dependent 

floating-point operations actually gains a 100% speed 

improvement when run within parallel. On other 

hand, hand-tuned assembly language programs using 

MMX or Altivec extensions & performing data pre-

fetches (as a good video encoder might) do not suffer 

from cache misses or idle computing resources. Such 

programs therefore do not benefit from hardware 

multithreading & could indeed see degraded 

performance due to contention for shared resources. 

From software standpoint, hardware support for 

multithreading is more visible to software, requiring 

more changes to both application programs & 

operating systems than multiprocessing. Hardware 

techniques used to support multithreading often 

parallel software techniques used for computer 

multitasking of computer programs. Thread 

scheduling is also a major problem within 

multithreading. 

 
[5] SCOPE OF RESEARCH 

If a thread gets a lot of cache misses, other threads 

could continue taking advantage of unused 

computing resources, that might   lead to faster 

overall execution as these resources would have been 

idle if only a single thread were executed. Also, if a 

thread cannot use all computing resources of CPU 

(because instructions depend on each other's result), 

running another thread might   prevent those 

resources from becoming idle. If several threads 

work on same set of data, they could actually share 

their cache, leading to better cache usage or 

synchronization on its values. 
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