
© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

STUDY OF MULTITHREADING ABILITY OF CENTRAL

PROCESSING UNIT
1
Sawati, Research Scholar, Department of CSE, IIET (Jind), jain008swati@gmail.com

2
Mrs. Nikita, Assistant Professor & HOD, Department of CSE, IIET (Jind), nikitasagar@gmail.com

Abstract: In computer architecture, multithreading is ability of a central

processing unit (CPU) or a single core within a multi-core processor to

implement multiple processes or threads concurrently, appropriately

supported by operating system. it plea differs from multiprocessing, as

within multithreading processes & threads have to share resources of a

single or multiple cores: computing units, CPU caches, & translation

lookaside buffer (TLB). Multiprocessing systems include multiple complete processing, multithreading targets to

increase utilization of a single core by using thread-level as well as instruction stage parallelism. As two approaches

are complementary, they are sometimes combined within systems within multiple multithreading CPUs & within

CPUs within multiple multithreading cores. A scheduler might aim at one of several goals, for example,

maximizing throughput, minimizing response time, or minimizing latency, maximizing fairness. In practice, these

goals often conflict, thus a scheduler would implement a acceptable agreement. Preference is given to any one of

concerns mentioned above, depending upon user's needs & objectives. Objective of research is to enhance efficiency

of scheduling dependent task using enhanced multithreading.

Keywords: TLP, Response Time, Latency, throughput, multithreading, Scheduling

[1]Introduction

The multithreading paradigm had been become more

favoured as efforts to further use instruction-level

parallelism have stalled since late 1990s. it allowed

concept of throughput computing to re-emerge from

more generalized field of transaction processing;

despite fact that it is very difficult to additionally

speed up a single thread or one program, most

computer systems are literally multitasking among

multiple threads or programs. Thus, methods that

improve throughput of all tasks result within overall

performance gains.

Types of multithreading

Block multithreading

The simplest type of multithreading happens when

one thread executes until it is blocked by an event

that normally would create a big latency stall. Such a

stall might be a cache miss that had been to access

off-chip memory, that might take hundreds of CPU

cycles for data to return. Instead of waiting for stall to

resolve, a threaded processor will switch execution to

another thread that was ready to run. Only when data

for previous thread had arrived, would previous

thread be placed back on list of ready-to-run threads.

For example:

1. Cycle i: instruction j from thread A is issued.

2. Cycle i + 1: instruction j + 1 from thread A

is issued.

3. Cycle i + 2: instruction j + 2 from thread A

is issued, that is a load instruction that

misses within all caches.

4. Cycle i + 3: thread scheduler invoked,

switches to thread B.

5. Cycle i + 4: instruction k from thread B is

issued.

6. Cycle i + 5: instruction k + 1 from thread B

is issued.

Conceptually, it is similar to cooperative multi-

tasking used within real-time operating systems,

within which tasks voluntarily give up

implementation time when they need to wait upon

some type of event. it type of multithreading is

known as block, cooperative or coarse-grained

multithreading.The target of multithreading hardware

support to allow quick switching between a blocked

thread & another thread ready to run. To achieve it

goal, hardware cost is to replicate program visible

registers, as well as some processor control registers

(such as program counter).change efficiently between

active threads, Such as to quickly switch between two

threads, register hardware needs to be represented

twice.

Additional hardware support for multithreading

allows thread switching to be done within one CPU

mailto:anugill29@gmail.com
mailto:nikitasagar@gmail.com

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

cycle, bringing performance enhancements. Also,

Some extra hardware allows each thread to behave as

if it were executing alone & not sharing any hardware

resources within other threads, minimizing amount

of software changes needed within application &

operating system to support multithreading.

Many families of microcontrollers & embedded

processors have multiple register banks to enable

quick context switching for interrupts. Such schemes

could be considered a type of block multithreading

among user program thread & interrupt threads.

Interleaved multithreading

The purpose of interleaved multithreading is to

exclude all data dependency stalls from execution

pipeline. Since one thread is comparatively

independent from other threads, there is very few

chance of one instruction within one pipelining stage

needing an output from an older instruction within

pipeline. Conceptually, it is similar to preemptive

multitasking used within operating systems; an

analogy would be that time slice given to each active

thread is one CPU cycle.

For example:

1. Cycle i + 1: an instruction from thread B is

issued.

2. Cycle i + 2: an instruction from thread C is

issued.

This kind of multithreading was first called barrel

processing, within which staves of a barrel represent

pipeline stages & their executing threads.Fine-

grained, preemptive,Interleaved or time-sliced

multithreading are more modern terminology.

In addition to hardware costs discussed within block

type of multithreading, interleaved multithreading

had been an further cost of each pipeline stage

tracking thread ID of instruction it is processing.

Also, since there are more threads being executed

simultaneously within pipeline, shared resources such

as caches & TLBs need to be larger to avoid

thrashing between different threads.

Simultaneous multithreading

The most advanced kind of multithreading applies to

superscalar processors. In contrast a normal

superscalar processor generates multiple instructions

from a single thread each CPU cycle, within

simultaneous multithreading (SMT) a superscalar

processor could issue instructions from multiple

threads each CPU cycle. identifying that any single

thread had been a limited number of instruction-level

parallelism, it type of multithreading tries to use

parallelism available beyond multiple threads to

decrease waste associated within unexploited issue

slots.

For example:

1. Cycle i: instructions j&j + 1 from thread A&

instruction k from thread B are

simultaneously issued.

2. Cycle i + 1: instruction j + 2 from thread A,

instruction k + 1 from thread B, &

instruction m from thread C are all

simultaneously issued.

3. Cycle i + 2: instruction j + 3 from thread A&

instructions m + 1 &m + 2 from thread C are

all simultaneously issued.

To distinguish other types of multithreading from

SMT, term "temporal multithreading" is used to

denote when instructions from only one thread could

be issued at a time.

In addition to hardware costs discussed for

interleaved multithreading, SMT had been additional

cost of each pipeline stage tracking thread ID of each

instruction being processed. Again, shared resources

such as caches & TLBs have to be sized for large

number of active threads being processed.

Implementations include DEC (later Compaq) EV8

(not completed), IBM POWER5, Intel Hyper-

Threading, Sun Microsystems UltraSPARC T2,

CRAY XMT, &MIPS MT.

Implementation specifics

A major area of research is thread scheduler that must

quickly choose among list of ready-to-run threads to

implement next as well as maintain ready-to-run &

stalled thread lists. An important subtopic is different

thread priority schemes that could be used by

scheduler. thread scheduler might be implemented

totally within software, totally within hardware, or as

a hardware/software combination.

Another area of research is what type of events would

cause a thread switch: cache misses, inter-thread

communication, DMA completion, etc.

If multithreading scheme replicates all of software-

visible state, including privileged control registers &

TLBs, then it provides virtual machines to be created

for each thread. it allows each thread to run its own

operating system on same processor. On other hand,

if only user-mode state is saved, then less hardware is

required, that would allow more threads to be active

at one time for same die area or cost.

[2] LITERATURE REVIEW

Yeh-Ching Chung wrote on “Performance

Analysisand Applications of A Compile-Time

Optimization Approach for List Scheduling

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

Algorithms on Distributed Memory

Multiprocessors”

They have reportedacompile-time optimization

approach, bottom-up top-down duplication heuristic

(BTDH), to static scheduling of directed+cyclic

graphs (DAGS) on distributed memory

multiprocessors (DMMs). In it paper, they discuss

applications of BTDH for list scheddhg algorithms

(LSAs). There are two ways to use BTDH for

LSAs.BTDHcan be used within aLSAto form a new

scheduling algorithm (LSA/BTDH). It could be

usedas apure optimization algorithm for a LSA

(LSA-BTDH). We have used BTDH within two

already knownLSAs, highest level first within

estimated time (HLFET) &earlier taskfirst (ETF)

heuristics. We have calculate extensive simulation to

study performance of BTDH for LSAs. Three

parameters, ratio of average communication cost to

average computation cost (CCR) of a DAG, graph

parallelism (GP) of a DAG& number(PN) of a

DMM,aresimulated. From sunulation, they have

following conclusions. Given a DAG, GP of DAG

could accurately predict number of processors to be

used such that a good scheduling length & a good

resource utilization (or efficiency) could be achieved

.

Ishfaq Ahmad1 & Yu-Kwong Kwok2 wrote on

“On Parallelizing Multiprocessor Scheduling

Problem”
Beingheuristics for scheduling a node & edge

weighted directed task graph to multiple processors

could produce satisfactory solutions but incur high

time complexities that tend to exacerbate within more

realistic environments within relaxed assumptions.

Accordingly, these heuristics do not scale well &

cannot handle problems of normal sizes. A natural

approach to reducing complexity while aiming for a

similar or potentially better solution is to parallelize

scheduling algorithm. it could be done by partitioning

task graphs & concurrently generating partial

schedules for partitioned parts that are then

concatenated to obtain final schedule. problem,

however, is nontrivial as there existsdependencies

among nodes of a task graph that must be preserved

for generating a valid schedule. Moreover, time clock

for scheduling is global for all processors (that are

executing parallel scheduling algorithm), making

inherent parallelism invisible. In it paper, they

introduce a parallel algorithm that is guided by a

systematic partitioning of task graph to perform

scheduling using multiple processors. algorithm

schedules both tasks & messages, & is suitable for

graphs within arbitrary computation &

communication costs, & is applicable to systems

within arbitrary network topologies using

homogeneous or heterogeneous processors. We have

executed algorithm on Intel Paragon & compared it

within three closely attached algorithms.

experimental results indicate that our algorithm

yields higher quality solutions while using an order

of magnitude less scheduling times. algorithm also

exhibits an interesting trade-off between solution

quality & speedup while scaling well within problem

size.

Maruf Ahmed, Sharif M. H. Chowdhury wrote on

List Heuristic Scheduling Algorithms for

Distributed Memory Systems within Improved

Time Complexity

They present a compile time list heuristic scheduling

algorithm known asLow Cost Critical Path algorithm

(LCCP) for distributed memory systems. LCCP had

been low scheduling cost for both homogeneous &

heterogeneous systems. In some recent papers list

heuristic scheduling algorithms keep their scheduling

rate low by using a fixed size heap & a FIFO, where

heap always keeps fixed number of tasks & excess

tasks are inserted within FIFO. When heap had been

empty spaces, tasks are inserted within it from FIFO.

Best known list scheduling algorithm depends on it

strategy requires two heap restoration operations, one

after extraction & another after insertion. Our LCCP

algorithm enhances on it by using only one such

operation for both extraction & insertion, that within

theory reduces scheduling cost without

compromising scheduling performance. In our

experiment they compare LCCP within other well

known list scheduling algorithms & it shows that

LCCP is fastest among all.

Wayne F. Boyer wrote on “Non-evolutionary

algorithm for scheduling dependent tasks within

distributed heterogeneous computing

environments”

The Problem of finding thebest matching &

scheduling of interdependent tasks within distributed

heterogeneous computing (DHC) environments is

generally known to be an NP-hard problem. In a

DHC system, task execution time is dependent on

machine to which it is assigned & task precedence

constraints are represented by a directed acyclic

graph. Recent research within evolutionary

techniques had been shown that genetic algorithms

usually obtain more efficient schedules that other

known algorithms.

We propose a non-evolutionary random scheduling

(RS) algorithm for efficient matching & scheduling

of inter-dependent tasks within a DHC system. RS is

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

a succession of randomized task orderings & a

heuristic mapping from task order to schedule.

Randomized task ordering is effectively a topological

sort where outcome might be any possible task

order for which task precedent constraints are

maintained. A detailed comparison to existing

evolutionary techniques (GA & PSGA) shows

proposed algorithm is less complex than evolutionary

techniques, computes schedules within less time, &

requires less memory & fewer tuning parameters.

Simulation results show that average schedules

produced by RS are approximately as efficient as

PSGA schedules for all cases studied & clearly more

efficient than PSGA for certain cases.

[3]RESEARCH METHODOLOGY

In computing, scheduling is method by which work

specified by some means is assigned to resources that

complete work. work might be virtual computation

elements such as threads, processes or data flows,

that are within turn scheduled onto hardware

resources such as processors, network links or

expansion cards.

A scheduler is what carries out scheduling activity.

Schedulers are often implemented so they keep all

computer resources busy (as within load balancing),

allow multiple users to share system resources

effectively, or to achieve a target quality of service.

Scheduling is fundamental to computation itself, &

an intrinsic part of execution model of a computer

system; concept of scheduling makes it possible to

have computer multitasking within a single central

processing unit (CPU).

A scheduler might aim at one of several goals, for

example, maximizing throughput (total amount of

work completed per time unit), minimizing response

time (time from work becoming enabled until first

point it begins execution on resources), or

minimizing latency (the time between work

becoming enabled & its subsequent completion),

maximizing fairness (equal CPU time to each

process, or more generally appropriate times

according to priority & workload of each process). In

practice, these goals often conflict (e.g. throughput

versus latency), thus a scheduler would implement a

suitable compromise. Preference is given to any one

of concerns mentioned above, depending upon user's

needs & objectives.

In real-time environments, such as embedded systems

for automatic control within industry (for example

robotics), scheduler also must ensure that processes

could meet deadlines; it is crucial for keeping system

stable. Scheduled tasks could also be distributed to

remote devices across a network & managed through

an administrative back end.

Scheduling disciplines are algorithms used for

distributing resources among parties that

simultaneously & asynchronously request them.

Scheduling disciplines are used within routers (to

handle packet traffic) as well as within operating

systems (to share CPU time among both threads &

processes), disk drives (I/O scheduling), printers

(print spooler), most embedded systems, etc.

The main purposes of scheduling algorithms are to

minimize resource starvation & to ensure fairness

amongst parties utilizing resources. Scheduling deals

within problem of deciding that of outstanding

requests is to be allocated resources. There are

several different scheduling algorithms. In it section,

we introduce several of them.

In packet-switched computer networks & other

statistical multiplexing, notion of a scheduling

algorithm is used as an alternative to first-come first-

served queuing of data packets.

The simplest best-effort scheduling algorithms are

round-robin, fair queuing (a max-min fair scheduling

algorithm), proportionally fair scheduling &

maximum throughput. If differentiated or guaranteed

quality of service is offered, as opposed to best-effort

communication, weighted fair queuing might be

utilized.

In advanced packet radio wireless networks such as

HSDPA (High-Speed Downlink Packet Access)

3.5G cellular system, channel-dependent

scheduling might be used to take advantage of

channel state information. If channel conditions are

favourable, throughput & system spectral efficiency

might be increased. In even more advanced systems

such as LTE, scheduling is combined by channel-

dependent packet-by-packet dynamic channel

allocation, or by assigning OFDMA multi-carriers or

other frequency-domain equalization components to

users that best could utilize them.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

Fig 1 System Call interface

Highly simplified structure of Linux kernel: process

scheduler, I/O scheduler, packet scheduler& other

subsystems

Operating

System

Preemption Algorithm

Amiga OS Yes Prioritized round-

robin scheduling

FreeBSD Yes Multilevel feedback

queue

Linux kernel

before 2.6.0

Yes Multilevel feedback

queue

Linux kernel

2.6.0–2.6.23

Yes O(1) scheduler

Linux kernel

after 2.6.23

Yes Completely Fair

Scheduler

Mac OS pre-9 None Cooperative

scheduler

Mac OS 9 Some Preemptive

scheduler for MP

tasks, &

cooperative for

processes & threads

Mac OS X Yes Multilevel feedback

queue

NetBSD Yes Multilevel feedback

queue

Solaris Yes Multilevel feedback

queue

Windows 3.1x None Cooperative

scheduler

Windows 95,

98, Me

Half Preemptive

scheduler for 32-bit

processes, &

cooperative for 16-

bit processes

Windows NT

(including

2000, XP,

Vista, 7, &

Server)

Yes Multilevel feedback

queue

[4] CHALLENGES WITHIN RESEARCH

Multiple threads could interfere within each other

when sharing hardware resources such as caches or

translation lookaside buffers (TLBs). As a result,

execution times of a single thread are not improved

but could be degraded, even when only one thread is

executing, due to lower frequencies or additional

pipeline stages that are necessary to accommodate

thread-switching hardware.

Overall efficiency varies; Intel claims up to 30%

improvement within its HyperThreading

technology,
[1]

 while a synthetic program just

performing a loop of non-optimized dependent

floating-point operations actually gains a 100% speed

improvement when run within parallel. On other

hand, hand-tuned assembly language programs using

MMX or Altivec extensions & performing data pre-

fetches (as a good video encoder might) do not suffer

from cache misses or idle computing resources. Such

programs therefore do not benefit from hardware

multithreading & could indeed see degraded

performance due to contention for shared resources.

From software standpoint, hardware support for

multithreading is more visible to software, requiring

more changes to both application programs &

operating systems than multiprocessing. Hardware

techniques used to support multithreading often

parallel software techniques used for computer

multitasking of computer programs. Thread

scheduling is also a major problem within

multithreading.

[5] SCOPE OF RESEARCH

If a thread gets a lot of cache misses, other threads

could continue taking advantage of unused

computing resources, that might lead to faster

overall execution as these resources would have been

idle if only a single thread were executed. Also, if a

thread cannot use all computing resources of CPU

(because instructions depend on each other's result),

running another thread might prevent those

resources from becoming idle. If several threads

work on same set of data, they could actually share

their cache, leading to better cache usage or

synchronization on its values.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

REFERENCE

1. Remzi H. Arpaci-Dusseau; Andrea C.

Arpaci-Dusseau (January 4, 2015).

"Chapter 7: Scheduling: Introduction,

Section 7.6: A New Metric: Response Time".

Operating Systems: Three Easy Pieces

(PDF). p. 6. Retrieved February 2, 2015.

2. Paul Krzyzanowski (2014-02-19). "Process

Scheduling: Who gets to run next?".

cs.rutgers.edu. Retrieved 2015-01-11.

3. Abraham Silberschatz, Peter Baer Galvin &

Greg Gagne (2013). Operating System

Concepts 9. John Wiley & Sons,Inc.

ISBN 978-1-118-06333-0.

4. Here is C-code for FCFS

5. Early Windows at Wayback Machine

6. Sriram Krishnan. "A Tale of Two Schedulers

Windows NT & Windows CE".

7. Inside Windows Vista Kernel: Part 1,

Microsoft Technet

8. "Vista Kernel Improvements".

9. "Technical Note TN2028 - Threading

Architectures".

10. "Mach Scheduling & Thread Interfaces".

11. http://www.ibm.com/developerworks/aix/lib

rary/au-aix5_cpu/index.html#N100F6

12. Molnár, Ingo (2007-04-13). "[patch]

Modular Scheduler Core & Completely Fair

Scheduler [CFS]". linux-kernel (Mailing

list).

