
© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 06 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

1

A MULTITHREADING BASED ENHANCED PROCESS SCHEDULING TECHNIQUE

FOR HETEROGENEOUS DISTIBUTED ENIVORNMENT

Sujata, Research Scholar, Department of CSA, CDLU Sirsa, sujata.sanauswap@gmail.com

Vikram singh, professor, Department of CSA, CDLU Sirsa, sujata.sanauswap@gmail.com

ABSTRACT: In computer architecture, multithreading is ability of a

central processing unit (CPU) or a single core within a multi-core

processor to execute multiple processes or threads concurrently,

appropriately supported by operating system. This approach differs

from multiprocessing, as with multithreading processes & threads have to share resources of a single or multiple

cores: computing units, CPU caches, & translation lookaside buffer (TLB). Multiprocessing systems include

multiple complete processing units, multithreading aims to increase utilization of a single core by using thread-level

as well as instruction-level parallelism. Objective of research is increase efficiency of scheduling dependent task

using enhanced multithreading. gang scheduling of parallel implicit-deadline periodic task systems upon identical

multiprocessor.

[1]INTRODUCTION

The multithreading paradigm has become more

popular as efforts to further exploit instruction-level

parallelism have stalled since late 1990s. This

allowed concept of throughput computing to re-

emerge from more specialized field of transaction

processing; even though it is very difficult to further

speed up a single thread or single program, most

computer systems are actually multitasking among

multiple threads or programs. Thus, techniques that

improve throughput of all tasks result within overall

performance gains.

 [2] LITERATURE REVIEW

Yeh-Ching Chung wrote on “Applications &

Performance Analysis of A Compile-Time

Optimization Approach for List Scheduling

Algorithms on Distributed Memory

Multiprocessors”

They have proposed a compile-time optimization

approach, bottom-up top-down duplication heuristic

(BTDH), for static scheduling of directed+cyclic

graphs (DAGS) on distributed memory

multiprocessors (DMMs). In this paper, they discuss

applications of BTDH for list scheddhg algorithms

(LSAs). There are two ways to use BTDH for LSAs.

BTDHcan be used with a LSA to form a new

scheduling algorithm (LSA/BTDH). It could be

usedas apure optimization algorithm for a LSA

(LSA-BTDH)..

Ishfaq Ahmad1 & Yu-Kwong Kwok2 wrote on

“On Parallelizing Multiprocessor Scheduling

Problem”

Existing heuristics for scheduling a node & edge

weighted directed task graph to multiple processors

could produce satisfactory solutions but incur high

time complexities that tend to exacerbate within more

realistic environments with relaxed assumptions.

Consequently, these heuristics do not scale well &

cannot handle problems of moderate sizes. The

algorithm also exhibits an interesting trade-off

mailto:sujata.sanauswap@gmail.com
mailto:sujata.sanauswap@gmail.com

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 06 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

2

between solution quality & speedup while scaling

well with problem size.

Maruf Ahmed, Sharif M. H. Chowdhury wrote on

List Heuristic Scheduling Algorithms for

Distributed Memory Systems with Improved Time

Complexity

They present a compile time list heuristic scheduling

algorithm called Low Cost Critical Path algorithm

(LCCP) for distributed memory systems. LCCP has

low scheduling cost for both homogeneous &

heterogeneous systems. In some recent papers list

heuristic scheduling algorithms keep their scheduling

cost low by using a fixed size heap & a FIFO, where

heap always keeps fixed number of tasks & excess

tasks are inserted within FIFO. When heap has empty

spaces, tasks are inserted within it from FIFO. Best

known list scheduling algorithm based on this

strategy requires two heap restoration operations, one

after extraction & another after insertion. Our LCCP

algorithm improves on this by using only one such

operation for both extraction & insertion, that within

theory reduces scheduling cost without

compromising scheduling performance. In our

experiment they compare LCCP with other well

known list scheduling algorithms & it shows that

LCCP is fastest among all.

Wayne F. Boyer wrote on “Non-evolutionary

algorithm for scheduling dependent tasks within

distributed heterogeneous computing

environments”

The Problem of obtaining an optimal matching &

scheduling of interdependent tasks within distributed

heterogeneous computing (DHC) environments is

well known to be an NP-hard problem. In a DHC

system, task execution time is dependent on machine

to which it is assigned & task precedence constraints

are represented by a directed acyclic graph. Recent

research within evolutionary techniques has shown

that genetic algorithms usually obtain more efficient

schedules that other known algorithms.

Joël Goossens1 and Pascal Richard wrote on

“Optimal Scheduling of Periodic Gang Tasks”.

The gang scheduling of parallel implicit-deadline

periodic task systems upon identical multiprocessor

platforms is considered. In this scheduling problem,

parallel tasks use several processors simultaneously.

They propose two DPFair (deadline partitioning)

algorithms that schedule all jobs in every interval of

time delimited by two subsequent deadlines. These

algorithms define a static schedule pattern that is

stretched at run-time in every interval of the DP-Fair

schedule. The first algorithm is based on linear

programming and is the first one to be proved

optimal for the considered gang scheduling problem.

Furthermore, it runs in polynomial time for a fixed

number m of processors and an efficient

implementation is fully detailed. The second

algorithm is an approximation algorithm based

on a fixed-priority rule that is competitive under

resource augmentation analysis in order to compute

an optimal schedule pattern.

 [3] RESEARCH METHODOLOGY

In computing, scheduling is method by which work

specified by some means is assigned to resources that

complete work. The work may be virtual

computation elements such as threads, processes or

data flows, that are within turn scheduled onto

hardware resources such as processors, network links

or expansion cards.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 06 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

3

A scheduler is what carries out scheduling activity.

Schedulers are often implemented so they keep all

computer resources busy (as within load balancing),

allow multiple users to share system resources

effectively, or to achieve a target quality of service.

Scheduling is fundamental to computation itself, &an

intrinsic part of execution model of a computer

system concept of scheduling makes it possible to

have computer multitasking with a single central

processing unit (CPU). Researchers have made

assumptions and then implemented the algorithm to

schedule the processes. Multithreading and gang

scheduling technique are used separately, we will

combine these two approaches and study the result.

First we will ahead with simple processes scheduling

using multithreading and then specifies it with one

considering one scheduling algorithm.

 [4] CHALLENGES WITHIN RESEARCH

Multiple threads could interfere with each other when

sharing hardware resources such as caches or

translation lookaside buffers (TLBs). As a result,

execution times of a single thread are not improved

but could be degraded, even when only one thread is

executing, due to lower frequencies or additional

pipeline stages that are necessary to accommodate

thread-switching hardware.

Overall efficiency varies; Intel claims up to 30%

improvement with its Hyper Threading technology,
[l]

while a synthetic program just performing a loop of

non-optimized dependent floating-point operations

actually gains a l00% speed improvement when run

within parallel. Another hand, hand-tuned assembly

language programs using MMX or Altive extensions

& performing data pre-fetches (as a good video

encoder might) do not suffer from cache misses or

idle computing resources. Such programs therefore

do not benefit from hardware multithreading& could

indeed see degraded performance due to contention

for shared resources.

From software standpoint, hardware support for

multithreading is more visible to software, requiring

more changes to both application programs &

operating systems than multiprocessing. Hardware

techniques used to support multithreading often

parallel software techniques used for computer

multitasking of computer programs. Thread

scheduling is also a major problem within

multithreading.

Gang scheduling can employ either fixed or dynamic

partitioning for CPUs. Fixed partitioning divides

CPUs into disjoint subsets, and jobs are dispatched to

be scheduled within the subset. This can introduce

fragmentation if gang sizes are not equal. Dynamic

partitioning allows partitions to change sizes (move

CPUs from one partition to another) but this requires

complex synchronization of context switching across

the entire parallel system. It is advised to perform

repartitioning only when new job arrives into the

system (not with every context switch).

While designing DHC system it was assumed that

moving gangs across different partitions introduces

overhead that cannot be justified by the expected

performance gain. Gang migration policy proposed in

results in decreased response time. Decrease ranges

from l4% to 67% depending on the system load.

Another issue with gang scheduling is memory

consumption. In order for jobs to run efficiently,

paging in the system should be kept at minimum

because it drastically affects thread synchronization.

Admission control can prevent jobs to be gang

scheduled if the system is running to low on memory.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 06 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

4

These jobs are queued up and FCFS with backfilling

can be used for queue control. Gang scheduling

prevents long resource consuming jobs from starving

shorter jobs, thus resulting in decreased slowdown.

Scheduled interactive jobs appear to have near real

time performance due to time sharing nature of the

algorithm. Time complexity of algorithm has been

improved by multithreading but it also impacts the

schedule length of Gang Heuristic.

[5] PROPOSED IMPLEMENTATION

 D-P FAIR SCHEDULE

GANG HEURISTIC ALOGRITHM

We study the scheduling of preemptive periodic

implicit-deadline rigid gang real-time

63 tasks. We address the performance by modifying

DP fair scheduling polynomial time algorithm .We

will run the algorithm in parallel environment and

control the number of threads used by each cycle in

algorithm. Modified version of algorithm

implemented in matlab and compared with original.

Algorithm

input :

n jobs Jj(uj , vj), 1 _ j _ n ;

m: number of processors;

output :

Slice lengths S(s), s = 1, 2, . . .;

Scheduled jobs j in slice s: Sched(s,j) 2 {0, 1}, 1 _ j _

n ;

List=Sort(J1, . . . , Jn) ; /* Jobs are sorted in non

increasing order of vj */

s = 0 ; /* Number of slices */

rj := uj 8j = 1 · · · n ; /* Job remaining execution

times rj */

while 9j, rj > 0, 1 _ j _ n do

/* create a new slice */

s = s + 1 ; /* Number of slices */

K = m ; /* Remaining processors */

` = 1 ; /* Slice length upper bound */

Sched(s,j)=0 1 _ j _ n ;

Create virtual parallel multiprocessor environment

foreach j 2 List do

/* For each job j in priority List */

Foreach i=1to 4 /*4 parallel processors are

considered*/

Control the number of threads

if vj _ K then

/* the job j is schedulable in current slice */

Sched(s,j)=1;

` = min(`, rj); /* update slice length */

K = K − vj ; /* remaining processors */

end

end

end

S(s)=l; /* Slice length */

for j = 1 . . . n do

/* Update remaining execution times */

if Sched(s, j) then

rj = rj − `;

end

end

end

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 06 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

5

Fig 1 Original Gang Heuristic Algorithm Output

Fig 2 Modified Gang Heuristic algorithm output

[6] SCOPE OF RESEARCH

If a thread gets a lot of cache misses, other threads

could continue taking advantage of unused

computing resources, that may lead to faster overall

execution as these resources would have been idle if

only a single thread were executed. Also, if a thread

cannot use all computing resources of CPU (because

instructions depend on each other's result), running

another thread may prevent those resources from

becoming idle. If several threads work on same set of

data, they could actually share their cache, leading to

better cache usage or synchronization on its values.

By using Matlab as tool we can virtually take the four

processors that work simultaneously.

This algorithm can also be implemented in real time

heterogeneous environment.

[7] CONCLUSION

In this research, we have considered the preemptive

scheduling of implicit-deadline periodic gang task

systems upon identical multiprocessors. We have

modified the existing gang heuristic algorithm

which defines static patterns that are stretched at

runtime in a DP-Fair way with aim to reduce the time

complexity of algorithm. This has been implemented

by multithreading and multiprocessing. It also briefed

about and factors in parallel system scheduler design

and gives a summary of existing scheduling

algorithms, multithreading. When time complexity

reduced it impacts the space complexity and other

factors.

Workload (tasks) is classified with respect to

parallelism, interactivity and migration capabilities.

Types of input workload are clearly stated in the

comparisons in cases in which standard benchmarks

where not used. Current vendor offering is analyzed

with respect to the scheduling algorithm used. There

are many open questions in parallel job scheduling.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 06 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

6

Some are of philosophic nature such as definition of

effective system, while others consider utilization,

scalability, job migration support, etc.

[8] REFERENCE

l. Abraham Silberschatz, Peter Baer Galvin & Greg

Gagne (20l3). Operating System Concepts 9. John

Wiley & Sons,Inc. ISBN 978-l-ll8-06333-0.

2. Yeh-Ching Chung and Sanjay Ranka, Applications

and Performance Analysis of A Compile-Time

Optimization Approach for List Scheduling

Algorithms on Distributed Memory Multiprocessors,

l063-953Y92 $3.00 0 l992 IEEE

3. Ishfaq 5. Wayne F. Boyer, Gurdeep S. Hurab, Non-

evolutionary algorithm for scheduling dependent

tasks in distributed heterogeneous computing

environments, J. Parallel Distrib. Comput. 65 (2005)

l035 – l046

4. Ahmad and Yu-Kwong Kwok, On Parallelizing

the Multiprocessor Scheduling Problem,l998

5. Maruf Ahmed , Sharif M. H. Chowdhury and

Masud Hasan, List Heuristic Scheduling Algorithms

for Distributed Memory Systems with Improved Time

Complexity

6. Joël Goossens and Pascal Richard, Optimal

Scheduling of Periodic Gang Tasks

