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Abstract— Regular expressions are used to represent 

certain set of string in algebraic manner. Regular 

expressions are widely used in the field of compiler 

design, text editor, search for an email- address, grep 

filter of unix, train track switches, pattern matching 

,context switching and in many areas of computer 

science. The demand of converting regular expression 

into finite automata and vice versa motivates research 

into some alternative so that time taken for above is 

minimized. For conversion of deterministic finite 

automata to regular expression, several techniques like 

Transitive closure method, Brzozowski Algebraic 

method and state elimination method have been 

proposed. In this paper, for Conversion of regular 

expression to NFA we study the Thomson Algorithm; 

to convert NFA to DFA we use Subset Construction 

method, to minimized DFA constructed from previous 

step we use partition method and finally to convert 

DFA back to RE we use Universal Technique. 

 

Keywords— Regular Expression, DFA, NFA, ε-

closure  
 

I. INTRODUCTION 

 

In formal language theory regular expressions consist 

of strings of symbols from a finite alphabet Ʃ 

combined by various operators. In computing in 

general they can be used to match and replace strings, 

but formally they define regular languages.  Regular 

languages can be roughly defined, somewhat 

recursively, as any language consisting of a potentially 

infinite set of sequences of finite symbols from a finite 

alphabet that can be described by a regular expression 

or deterministic or nondeterministic finite automaton. 

 

The demand of converting regular expression into 

finite automata and vice versa motivates research into 

some alternative so that time taken for above is 

minimized. For conversion of deterministic finite 

automata to regular expression, several techniques like 

Transitive closure method, Brzozowski Algebraic 

method and state elimination method have been 

proposed. None of the above specified technique is 

able to find smallest regular expression. Our purpose 

is to find the smallest regular expression equivalent to 

given deterministic finite automata. State elimination 

approach is the most widely used and efficient 

approach for converting deterministic finite automata 

to regular expression.  

 

The presented paper investigates and compares 

different techniques used for converting deterministic 

finite automata to regular expression. Brief 

comparis

ons 

amongst 

different 

techniqu

es are 

presented and several heuristics are explored for 

obtaining smaller regular expression using state 

elimination approach. Here we define and implement 

algorithms to convert regular expressions to NFA, to 

convert these NFA to DFA, minimization of these 

DFA and finally conversion of these minimized DFA 

back into a regular expressions. The algorithms 

addressed include Thompson's Algorithm and the 

Rabin and Scott‘s Subset Construction. To minimized 

DFA constructed from previous step we use partition 

method and finally to convert DFA back to RE we use 

Universal Technique. 

 

II.   LITERATURE REVIEW 

 

This section describes different techniques used for 

converting deterministic finite automata to regular 

expression and vice versa.  

 

[A] Conversion of DFA to RE  

 

Kleene proves that every RE has equivalent DFA and 

vice versa. On the basis of this theoretical result, it is 

clear that DFA can be converted into RE and vice 

versa using some algorithms or techniques. For 

converting RE to DFA, first we convert RE to 

NFA(Thomson Construction) and then NFA is 

converted into DFA(Subset construction).For 

conversion of DFA to regular expression, following 

methods have been introduced.[2, 12, 10]  

 

 ▪ Transitive closure method  

 ▪ Brzozowski Algebraic method  

 ▪ State elimination method  

 

[A1] Transitive Closure Method  
 

Kleene's transitive closure method [2, 12] defines 

regular expressions and proves that there is equivalent 

RE corresponding to a DFA. Transitive closure is the 

first mathematical technique, for converting DFAs to 

regular expressions. It is based on the dynamic 

programming technique. In this method we use R
k
ij 

which denotes set of all the strings in Σ* that take the 

DFA from the state qi to qj without entering or leaving 

any state higher than qk. There are finite sets of R
k
ij so 

that each of them is generated by a simple regular 

expression that lists out all the strings.  
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[A2] Brzozwski Algebraic Method  

 

Brzozowski method [10] is a unique approach for 

converting deterministic finite automata to regular 

expressions. In this approach first characteristic 

equations for each state are created which represent 

regular expression for that state. Regular expression 

equivalent to deterministic finite automata is obtained 

after solving the equation of Rs (regular expression 

associated with starting state qs).  

 

[A3] State Elimination Method  

 

The state removal approach [12, 13] is widely used 

approach for converting DFA to regular expression. In 

this approach, states of DFA are removed one by one 

until we left with only starting and final state, for each 

removed state regular expression is generated. This 

newly generated regular expression act as input for a 

state which is next to removed state. The advantage of 

this technique over the transitive closure method is 

that it is easier to visualize. This technique is 

described by Du and Ko [2], but a much simpler 

approach is given by Linz [13]. First, if there are 

multiple edges from one node to other node, then 

these are unified into a single edge that contains the 

union of inputs. Suppose from q1 to q2 there is an 

edge weighted ‗a‘ and an edge weighted ‗b‘, those 

would be unified into one edge from q1 to q2 that has 

the weight (a + b). If there are n accepting states, take 

union of n different regular expressions.  

 

[B] Conversion of RE to FA 

 

It turns out that every Regular Expression has an 

equivalent NFA and vice versa. There are multiple 

ways to translate RE into equivalent NFA‘s but there 

are two main and most popular approaches. The first 

approach and the one that will be used during this 

project is the Thompson algorithm and the other one is 

McNaughton and Yamada‘s algorithm.  

 

[B1] Thompson’s algorithm 

 

Thompson algorithm was first described by Thompson 

in his CACM paper in 1968. Thompson‘s algorithm 

parse the input string (RE) using the bottom-up 

method, and construct the equivalent NFA. The final 

NFA is built from partial NFA‘s, it means that the RE 

is divided in several subexpressions, in our case every 

regular expression is shown by a common tree, and 

every subexpression is a subtree in the main common 

tree. Based on the operator the subtree is constructed 

differently which results on a different partial NFA 

construction. 

 

[B2] McNaughton and Yamada Algorithm 

 

The idea of the McNaughton and Yamada algorithm is 

that it makes diagrams for subexpressions in a 

recursive way and then puts them together. According 

to Storer [10] and Chang [9] the McNaughton and 

Yamada‘s NFA has a distinct state for every character 

in RE except the initial state. We can say that 

McNaughton and Yamada‘s automaton can also be 

viewed as a NFA transformed from Thompson‘s NFA. 
 

III.  OVERVIEW OF WORK 

 

[A] Conversion of Regular Expression to NFA - 

Thompson's construction 

 

The simplest method to convert a regular expression 

to a NFA is Thompson's Construction, also known as 

Thompson's Algorithm. Roughly speaking this works 

by reducing the regular expression to its smallest 

constituent regular expressions, converting these to 

NFA (shown here as state diagrams) and then joining 

these NFA together.  

 

Ex: We will construct the NFA for the regular 

expression (a | b)* | c using Thompson's Construction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Thomson Construction: (a | b)* | c 

 

[B] Conversion of NFA to DFA: The Subset 

Construction 

 

To convert the NFA to DFA we will use Rabin and 

Scott's Subset Construction. Central to this is the 

concept of the closure. One of the major steps of the 

subset construction is: 

 

Find the ε-closure for each state. 

 

This is defined as: 

 

The ε-closure of state 0 is the set of all states 

reachable from 0 by zero or more ε-transitions. 

Construct DFA from the NFA of Regular Expression 

(a | b) * c. 
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Figure 2: Subset Construction:  (a | b) * c  

 

[C] Minimisation of DFA 

 

For any DFA there is a DFA with equal or fewer states 

that matches exactly the same language. In other 

words, there can be several DFAs that represent a 

language, some will be bigger than others and only 

one will be minimal. 

 

To minimise a DFA three steps must be performed: 

 

▪ Removal of dead states. 

▪ Removal of inaccessible states. 

▪ Merging of identical states. 

 

IV.  PROPOSED WORK 

 

To convert our DFA back to a regular expression we 

will use universal technique.  

 

A universal regular expression is a non-specific 

regular expression which is lengthy then the specific 

regular expression but it is cleaner then specific 

regular expression. We can create a universal regular 

expression that contains the original regular 

expression by performing three steps on our 

minimised DFA: 

 

▪ Add one start state that steps to all other start states 

via an ε. 

▪ Add one final state that final states step to via an ε. 

▪ Remove each state between these in turn until we are 

left with the regular expression. 

 

The first two steps are best represented using state 

diagrams and the last is best demonstrated using a 

matrix. Indeed the implementation of the third step 

involves successive 2-dimensional arrays. 

 

First we consider a simple DFA that we could have 

generated from the regular expression ab. Here is our 

initial DFA (with transitions to null states removed for 

clarity): 

 

 

 

 

 

 

First we add a new start state IN: 

 

 

 

 

 

 

Next we add a new final state OUT: 

 

 

 

 

 

 

 

Thirdly we create a matrix (transition table) from 

which we will remove states: 

 

Table 1: Transition table 1 (for the string ab) 

 

The rows represent the state being stepped from and 

the columns represent the state being stepped to. For 

example, the symbol a in the table represents the step 

from state 0 to state 1 using the symbol a. 

 

Next we will remove one state from the matrix to 

create a new matrix. For this example we will 

consistently remove the zero state. In order to do this 

the steps between other nodes may have to be altered 

to compensate for the missing state. We calculate this 

with the following pseudo-code: 

 

rip = 0 

for i = IN to 2 inclusive excluding 0 do 

for j = 1 to OUT inclusive do 

 IN 0 1 2 OUT 

IN - ε - - - 

0 - - a - - 

1 - - - b - 

2 - - - - ε 

OUT - - - - - 
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if (i == IN) 

cell[i, j - 1] = cell[i,j] | ( cell[i, rip] (cell[rip, rip])* 

cell[rip, j] ) 

else 

cell[i – 1, j - 1] = cell[i,j] | ( cell[i, rip] (cell[rip, rip])* 

cell[rip, j] ) 

end if 

end for 

end for 

 

We exclude state 0 from both i and j as we are 

removing it. i doesn't address the OUT state as nothing 

can step from it and j doesn't address the IN state as 

there is no way it can be stepped to. The if and else are 

present as the new grid will have one fewer row and 

column than the original. We need to reduce the 

indices otherwise some of the new values won't fit. 

 

Applying the above procedure to our original matrix 

leaves us with the following new matrix: 

 

Table 2: Transition table 2 (for the string ab) 

 

 

 

 

 

 

 

 

 

 

 

 

Which looks like: 

 

 

 

 

 

 

Next we will perform the same procedure on the new 

grid. This gives us: 

 

Table 3: Transition table 3 (for the string ab) 

 

 

 

 

 

 

 

 

 
 

This can be represented as: 

 

 

 

Here we can see the distinctive feature of universal 

regular expression over DFA and NFA, that there can 

be transitions consisting of regular expressions. We 

can already see that we have our original regular 

expression back again, but this is not always the case 

for all conversions. For completeness we will show 

the remaining step: 

 

Table 4: Transition table 4 (for the string ab) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The top right hand cell of the final two-by-two matrix 

shows the regular expression. In this instance the 

regular expression generated is the same as the 

original. This is often not the case, the regular 

expressions produced by this method can be much 

longer than the original and have many redundant 

terms.  

 

The regular expressions (a|b)* when turned into DFA 

and back again by our code produces the regular 

expression (epsilon|(a(a)*))|((b)|(a(a)*b)((b)|(a(a)*b))* 

epsilon|(a(a)*))) 

 

After removing excess brackets we are left with 

(epsilon|(aa*))|(b|(aa*b)(b|(aa*b))*epsilon|(aa*))) 

 

If examined closely it can be seen that this is indeed 

the same as (a|b)* although it's far from obvious. 

 

                     IV. RESULTS & DISCUSSIONS 

 

[A] Results 

 

In order to obtain the desired results from the 

conversion software we require following steps: 

 

1. Type the regular expression term in the concern text 

field. 

 

2. Press the generate FA tables button. 

 

 IN 0 1 OUT 

IN - a - - 

0 - - b - 

1 - - - ε 

OUT - - - - 

 IN 0 OUT 

IN - ab - 

0 - - ε 

OUT - - - 

 IN OUT 

IN - ab 

OUT - - 
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The software will perform the following actions and 

the result of these steps is obtained on the screen. 

1. The NFA table text area is filled with the transition 

table of NFA states. 

 

2. The DFA table text area filled with the transition 

table of corresponding DFA states. 

 

3. The minimized DFA table text area is filled with the 

transition table of minimized DFA states. 

 

4. The final term text field is filled with enhanced 

form of regular expression constructed from 

minimized DFA states. 

 

5. The label at the bottom will display success 

message ―Regex conversion completed‖. 

 

[B] Discussions 

 

Thompson’s Algorithm 

Thompson‘s algorithm can be shown to have a 

running time linear to the length of the regular 

expression. This is obvious from the structure of the 

parser in the class RegexAutomaton – it passes 

through the regular expression once and constructs the 

NFA from simple components. The Thomson 

algorithm requires storage one more than the length of 

the regular expression. 

 

Subset Construction 

Rabin and Scott's subset construction as outlined in 

this document has a worst case of n
2  

 where n is the 

number of NFA nodes, although in most cases it is 

considerably less. It is the main method of converting 

an NFA to a DFA. It requires storage same as the 

number of NFA nodes. 

 

State Minimisation 

The state minimisation algorithm outlined here is one 

of the commonest and has a worst-case running time 

of n
2
. In the first step it reduces one state, in the 2

nd
 

another state. Hence its complexity is n
2
. It require 

storage equal to the number of nodes in minimize 

DFA.  

 

DFA to Regex via Universal Technique 

This algorithm has a running time that has a worst 

case running time of n
2
. This can readily be deduced 

from its use of a matrix, which clearly hints at the 

running time being at least proportional to the square 

of the number of terms. The terms themselves can also 

be very lengthy and the matrix can consume a lot of 

storage. It can consume storage space equal to width 

of final regular expression constructed. 

 

V. CONCLUSION 

 

Researching this project has shown that the conversion 

of regular expressions to DFA and back again are 

processes that are well understood and are 

implementable without any great difficulty. The most 

time-consuming part of the project was coding the 

parser for the regular expression. This is because 

while regular expressions define regular languages, 

they themselves are not regular and must be described 

by context-free grammars. In this paper, for 

Conversion of regular expression to NFA we study the 

Thomson Algorithm; to convert NFA to DFA we use 

Subset Construction method, to minimized DFA 

constructed from previous step we use partition 

method and finally to convert DFA back to RE we use 

Universal Technique. 

. 
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