
© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July - September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

An Efficient Technique for Conversion of

Regular Expression to and from Finite Automata
Neha Sharma, Department of Computer Science, Neha_sh0815@yahoo.com

South Point Institute of Technology and Management,Sonepat

Abstract— Regular expressions are used to represent

certain set of string in algebraic manner. Regular

expressions are widely used in the field of compiler

design, text editor, search for an email- address, grep

filter of unix, train track switches, pattern matching

,context switching and in many areas of computer

science. The demand of converting regular expression

into finite automata and vice versa motivates research

into some alternative so that time taken for above is

minimized. For conversion of deterministic finite

automata to regular expression, several techniques like

Transitive closure method, Brzozowski Algebraic

method and state elimination method have been

proposed. In this paper, for Conversion of regular

expression to NFA we study the Thomson Algorithm;

to convert NFA to DFA we use Subset Construction

method, to minimized DFA constructed from previous

step we use partition method and finally to convert

DFA back to RE we use Universal Technique.

Keywords— Regular Expression, DFA, NFA, ε-

closure

I. INTRODUCTION

In formal language theory regular expressions consist

of strings of symbols from a finite alphabet Ʃ

combined by various operators. In computing in

general they can be used to match and replace strings,

but formally they define regular languages. Regular

languages can be roughly defined, somewhat

recursively, as any language consisting of a potentially

infinite set of sequences of finite symbols from a finite

alphabet that can be described by a regular expression

or deterministic or nondeterministic finite automaton.

The demand of converting regular expression into

finite automata and vice versa motivates research into

some alternative so that time taken for above is

minimized. For conversion of deterministic finite

automata to regular expression, several techniques like

Transitive closure method, Brzozowski Algebraic

method and state elimination method have been

proposed. None of the above specified technique is

able to find smallest regular expression. Our purpose

is to find the smallest regular expression equivalent to

given deterministic finite automata. State elimination

approach is the most widely used and efficient

approach for converting deterministic finite automata

to regular expression.

The presented paper investigates and compares

different techniques used for converting deterministic

finite automata to regular expression. Brief

comparis

ons

amongst

different

techniqu

es are

presented and several heuristics are explored for

obtaining smaller regular expression using state

elimination approach. Here we define and implement

algorithms to convert regular expressions to NFA, to

convert these NFA to DFA, minimization of these

DFA and finally conversion of these minimized DFA

back into a regular expressions. The algorithms

addressed include Thompson's Algorithm and the

Rabin and Scott‘s Subset Construction. To minimized

DFA constructed from previous step we use partition

method and finally to convert DFA back to RE we use

Universal Technique.

II. LITERATURE REVIEW

This section describes different techniques used for

converting deterministic finite automata to regular

expression and vice versa.

[A] Conversion of DFA to RE

Kleene proves that every RE has equivalent DFA and

vice versa. On the basis of this theoretical result, it is

clear that DFA can be converted into RE and vice

versa using some algorithms or techniques. For

converting RE to DFA, first we convert RE to

NFA(Thomson Construction) and then NFA is

converted into DFA(Subset construction).For

conversion of DFA to regular expression, following

methods have been introduced.[2, 12, 10]

 ▪ Transitive closure method

 ▪ Brzozowski Algebraic method

 ▪ State elimination method

[A1] Transitive Closure Method

Kleene's transitive closure method [2, 12] defines

regular expressions and proves that there is equivalent

RE corresponding to a DFA. Transitive closure is the

first mathematical technique, for converting DFAs to

regular expressions. It is based on the dynamic

programming technique. In this method we use R
k
ij

which denotes set of all the strings in Σ* that take the

DFA from the state qi to qj without entering or leaving

any state higher than qk. There are finite sets of R
k
ij so

that each of them is generated by a simple regular

expression that lists out all the strings.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July - September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

[A2] Brzozwski Algebraic Method

Brzozowski method [10] is a unique approach for

converting deterministic finite automata to regular

expressions. In this approach first characteristic

equations for each state are created which represent

regular expression for that state. Regular expression

equivalent to deterministic finite automata is obtained

after solving the equation of Rs (regular expression

associated with starting state qs).

[A3] State Elimination Method

The state removal approach [12, 13] is widely used

approach for converting DFA to regular expression. In

this approach, states of DFA are removed one by one

until we left with only starting and final state, for each

removed state regular expression is generated. This

newly generated regular expression act as input for a

state which is next to removed state. The advantage of

this technique over the transitive closure method is

that it is easier to visualize. This technique is

described by Du and Ko [2], but a much simpler

approach is given by Linz [13]. First, if there are

multiple edges from one node to other node, then

these are unified into a single edge that contains the

union of inputs. Suppose from q1 to q2 there is an

edge weighted ‗a‘ and an edge weighted ‗b‘, those

would be unified into one edge from q1 to q2 that has

the weight (a + b). If there are n accepting states, take

union of n different regular expressions.

[B] Conversion of RE to FA

It turns out that every Regular Expression has an

equivalent NFA and vice versa. There are multiple

ways to translate RE into equivalent NFA‘s but there

are two main and most popular approaches. The first

approach and the one that will be used during this

project is the Thompson algorithm and the other one is

McNaughton and Yamada‘s algorithm.

[B1] Thompson’s algorithm

Thompson algorithm was first described by Thompson

in his CACM paper in 1968. Thompson‘s algorithm

parse the input string (RE) using the bottom-up

method, and construct the equivalent NFA. The final

NFA is built from partial NFA‘s, it means that the RE

is divided in several subexpressions, in our case every

regular expression is shown by a common tree, and

every subexpression is a subtree in the main common

tree. Based on the operator the subtree is constructed

differently which results on a different partial NFA

construction.

[B2] McNaughton and Yamada Algorithm

The idea of the McNaughton and Yamada algorithm is

that it makes diagrams for subexpressions in a

recursive way and then puts them together. According

to Storer [10] and Chang [9] the McNaughton and

Yamada‘s NFA has a distinct state for every character

in RE except the initial state. We can say that

McNaughton and Yamada‘s automaton can also be

viewed as a NFA transformed from Thompson‘s NFA.

III. OVERVIEW OF WORK

[A] Conversion of Regular Expression to NFA -

Thompson's construction

The simplest method to convert a regular expression

to a NFA is Thompson's Construction, also known as

Thompson's Algorithm. Roughly speaking this works

by reducing the regular expression to its smallest

constituent regular expressions, converting these to

NFA (shown here as state diagrams) and then joining

these NFA together.

Ex: We will construct the NFA for the regular

expression (a | b)* | c using Thompson's Construction.

Figure 1: Thomson Construction: (a | b)* | c

[B] Conversion of NFA to DFA: The Subset

Construction

To convert the NFA to DFA we will use Rabin and

Scott's Subset Construction. Central to this is the

concept of the closure. One of the major steps of the

subset construction is:

Find the ε-closure for each state.

This is defined as:

The ε-closure of state 0 is the set of all states

reachable from 0 by zero or more ε-transitions.

Construct DFA from the NFA of Regular Expression

(a | b) * c.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July - September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

Figure 2: Subset Construction: (a | b) * c

[C] Minimisation of DFA

For any DFA there is a DFA with equal or fewer states

that matches exactly the same language. In other

words, there can be several DFAs that represent a

language, some will be bigger than others and only

one will be minimal.

To minimise a DFA three steps must be performed:

▪ Removal of dead states.

▪ Removal of inaccessible states.

▪ Merging of identical states.

IV. PROPOSED WORK

To convert our DFA back to a regular expression we

will use universal technique.

A universal regular expression is a non-specific

regular expression which is lengthy then the specific

regular expression but it is cleaner then specific

regular expression. We can create a universal regular

expression that contains the original regular

expression by performing three steps on our

minimised DFA:

▪ Add one start state that steps to all other start states

via an ε.

▪ Add one final state that final states step to via an ε.

▪ Remove each state between these in turn until we are

left with the regular expression.

The first two steps are best represented using state

diagrams and the last is best demonstrated using a

matrix. Indeed the implementation of the third step

involves successive 2-dimensional arrays.

First we consider a simple DFA that we could have

generated from the regular expression ab. Here is our

initial DFA (with transitions to null states removed for

clarity):

First we add a new start state IN:

Next we add a new final state OUT:

Thirdly we create a matrix (transition table) from

which we will remove states:

Table 1: Transition table 1 (for the string ab)

The rows represent the state being stepped from and

the columns represent the state being stepped to. For

example, the symbol a in the table represents the step

from state 0 to state 1 using the symbol a.

Next we will remove one state from the matrix to

create a new matrix. For this example we will

consistently remove the zero state. In order to do this

the steps between other nodes may have to be altered

to compensate for the missing state. We calculate this

with the following pseudo-code:

rip = 0

for i = IN to 2 inclusive excluding 0 do

for j = 1 to OUT inclusive do

 IN 0 1 2 OUT

IN - ε - - -

0 - - a - -

1 - - - b -

2 - - - - ε

OUT - - - - -

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July - September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

if (i == IN)

cell[i, j - 1] = cell[i,j] | (cell[i, rip] (cell[rip, rip])*

cell[rip, j])

else

cell[i – 1, j - 1] = cell[i,j] | (cell[i, rip] (cell[rip, rip])*

cell[rip, j])

end if

end for

end for

We exclude state 0 from both i and j as we are

removing it. i doesn't address the OUT state as nothing

can step from it and j doesn't address the IN state as

there is no way it can be stepped to. The if and else are

present as the new grid will have one fewer row and

column than the original. We need to reduce the

indices otherwise some of the new values won't fit.

Applying the above procedure to our original matrix

leaves us with the following new matrix:

Table 2: Transition table 2 (for the string ab)

Which looks like:

Next we will perform the same procedure on the new

grid. This gives us:

Table 3: Transition table 3 (for the string ab)

This can be represented as:

Here we can see the distinctive feature of universal

regular expression over DFA and NFA, that there can

be transitions consisting of regular expressions. We

can already see that we have our original regular

expression back again, but this is not always the case

for all conversions. For completeness we will show

the remaining step:

Table 4: Transition table 4 (for the string ab)

The top right hand cell of the final two-by-two matrix

shows the regular expression. In this instance the

regular expression generated is the same as the

original. This is often not the case, the regular

expressions produced by this method can be much

longer than the original and have many redundant

terms.

The regular expressions (a|b)* when turned into DFA

and back again by our code produces the regular

expression (epsilon|(a(a)*))|((b)|(a(a)*b)((b)|(a(a)*b))*

epsilon|(a(a)*)))

After removing excess brackets we are left with

(epsilon|(aa*))|(b|(aa*b)(b|(aa*b))*epsilon|(aa*)))

If examined closely it can be seen that this is indeed

the same as (a|b)* although it's far from obvious.

 IV. RESULTS & DISCUSSIONS

[A] Results

In order to obtain the desired results from the

conversion software we require following steps:

1. Type the regular expression term in the concern text

field.

2. Press the generate FA tables button.

 IN 0 1 OUT

IN - a - -

0 - - b -

1 - - - ε

OUT - - - -

 IN 0 OUT

IN - ab -

0 - - ε

OUT - - -

 IN OUT

IN - ab

OUT - -

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July - September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

The software will perform the following actions and

the result of these steps is obtained on the screen.

1. The NFA table text area is filled with the transition

table of NFA states.

2. The DFA table text area filled with the transition

table of corresponding DFA states.

3. The minimized DFA table text area is filled with the

transition table of minimized DFA states.

4. The final term text field is filled with enhanced

form of regular expression constructed from

minimized DFA states.

5. The label at the bottom will display success

message ―Regex conversion completed‖.

[B] Discussions

Thompson’s Algorithm

Thompson‘s algorithm can be shown to have a

running time linear to the length of the regular

expression. This is obvious from the structure of the

parser in the class RegexAutomaton – it passes

through the regular expression once and constructs the

NFA from simple components. The Thomson

algorithm requires storage one more than the length of

the regular expression.

Subset Construction

Rabin and Scott's subset construction as outlined in

this document has a worst case of n
2

 where n is the

number of NFA nodes, although in most cases it is

considerably less. It is the main method of converting

an NFA to a DFA. It requires storage same as the

number of NFA nodes.

State Minimisation

The state minimisation algorithm outlined here is one

of the commonest and has a worst-case running time

of n
2
. In the first step it reduces one state, in the 2

nd

another state. Hence its complexity is n
2
. It require

storage equal to the number of nodes in minimize

DFA.

DFA to Regex via Universal Technique

This algorithm has a running time that has a worst

case running time of n
2
. This can readily be deduced

from its use of a matrix, which clearly hints at the

running time being at least proportional to the square

of the number of terms. The terms themselves can also

be very lengthy and the matrix can consume a lot of

storage. It can consume storage space equal to width

of final regular expression constructed.

V. CONCLUSION

Researching this project has shown that the conversion

of regular expressions to DFA and back again are

processes that are well understood and are

implementable without any great difficulty. The most

time-consuming part of the project was coding the

parser for the regular expression. This is because

while regular expressions define regular languages,

they themselves are not regular and must be described

by context-free grammars. In this paper, for

Conversion of regular expression to NFA we study the

Thomson Algorithm; to convert NFA to DFA we use

Subset Construction method, to minimized DFA

constructed from previous step we use partition

method and finally to convert DFA back to RE we use

Universal Technique.

.

REFERENCES

[1] Alfred V. Aho, ―Constructing a Regular

Expression from a DFA‖, Lecture notes in Computer

Science Theory, September 27, 2010, Available at

http://www.cs.columbia.edu/~aho/cs3261/lectures.

[2] Ding-Shu Du and Ker-I Ko, ―Problem Solving in

Automata, Languages, and Complexity‖, John Wiley

& Sons, New York, NY, 2001.

[3] Gelade, W., Neven, F., ―Succinctness of the

complement and intersection of regular expressions‖,

Symposium on Theoretical Aspects of Computer

Science. Dagstuhl Seminar Proceedings, vol. 08001,

pages 325–336. IBFI (2008).

[4] Gruber H. and Gulan, S. (2009), ―Simplifying

regular expressions: A quantitative perspective‖, IFIG

Research Report 0904.

[5] Gruber H. and Holzer, M., ‖Provably shorter

regular expressions from deterministic finite

automata‖, LNCS, vol. 5257, pages 383–395.

Springer, Heidelberg (2008).

[6] Gulan, S. and Fernau H., ―Local elimination-

strategies in automata for shorter regular expressions‖,

In Proceedings of SOFSEM 2008, pages 46–57

(2008).

[7] H. Gruber and M. Holzer, ―Finite automata,

digraph connectivity, and regular expression size‖, In

Proceedings of the 35th International Colloquium on

Automata, Languages and Programming, Iceland, July

2008. Springer.

[8] H. Gruber and J. Johannsen, ―Optimal lower

bounds on regular expression size using

communication complexity‖, In Proceedings of the

11th International Conference Foundations of

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 05 | July - September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

Software Science and Computation Structures, volume

4962 of LNCS, pages 273–286, Budapest, Hungary,

March–April 2008. Springer.

[9] H. Hosoya, ―Regular expression pattern matching

– a simpler design‖, Technical Report 1397, RIMS,

Kyoto University, 2003.

[10] Janusz A. Brzozowski, ―Derivatives of regular

expressions‖, J. ACM,11(4) pages 481-494, 1964.

[11] J. J. Morais, N. Moreira, and R. Reis, ―Acyclic

automata with easy-to-find short regular expressions‖,

In 10th Conference on Implementation and

Application of Automata, volume 3845 of LNCS,

pages 349–350, France, June 2005. Springer.

[12] K. Ellul, B. Krawetz, J. Shallit, and M.Wang,

―Regular expressions: New results and open

problems‖, Journal of Automata, Languages and

Combinatorics, 10(4):pages 407– 437, 2005.

[13] Peter Linz, Formal Languages and Automata

(Fourth Edition), Jones and Bartlett Publishers, 2006.

