
© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 04 | July – September 2016

Paper is available at www.jrps.in | Email : info@jrps.in

 THE SOFTWARE DEVELOPMENT OF ORGANIZATION ON AGILE METHODOLOGY

Saurabh
1
, Mrs. Savita Bishnoi

2

1
M. tech. Research Scholar, Rohtak Institute of Engg. & Mgt. College

2
Rohtak Institute of Engg. & Mgt. College

Abstract:
The basic requirement of Software development methodology is delivery,
adaptation to requirements and feedback collection on required information.
Agile software development is a group of software development methodologies
that well promotes the development iterations, open collaboration, and process
adaptability throughout the project. This paper includes performance analysis
and comparison of agile methodology with traditional one.
However, when some projects are implemented in a business environment, there is often a lack of well established
method of project management or skilled project implementers, so that methods can be used that were used in large
organizations. A good project management method that can help with successful implementation could prove beneficial
to many organizations of small and medium size. Agile project management has great potential to fill this role, and it
was with this goal in mind that this research was conducted. This paper is a survey for all agile development methods
and their comparison with simple software development methodologies. In this Paper there will be discussed about
some agile methodology with respect to parameters of performance analysis and process estimation.

I. Introduction

In recent years, organizations have realized the
very real value of Big Data. In order to preserve the
competitive edge, we need to change the way we store
and manage your data - but main problem is, how will we
remain agile with the onset of information?

Agility means that the quality of being agile.
These days, the web software industry and Mobile
application development industry are searching for a
better approach of software development. Conventional
software development methods have the feature to
completely close all the requirements process before
analysis and design phases. Feasibility and compatibility
of this process with all projects is very less. Agile methods
have an advantage to allow developers, so that they can
make late changes in the requirement specification
document.
“Agile Software Development Manifesto” is presented as
following:

• Individuals and interactions are done over processes
and tools

• Working software over comprehensive
documentation.

• Customer collaboration over contract negotiation

• Responding to change over following a plan
a) The communication between the individual who are
in development team is very important, because

development centers are located at different places. The
necessity of interaction between Individuals over tools
and versions and processes is very important [1].
b) One objective of software development team is to
continuous delivery of the working software for the
customers. New releases must be produced for frequent
intervals. The property of developers is that, they try to
keep the code simple, straight forward and technically as
advanced as possible and will try to decrease the
documentation.
c) The pace and size of project will depend on the
relationship between developers and the stakeholders.
The key part of the relationship is the cooperation and
negotiation between clients. Agile methods can be used
in maintaining good relationship with clients.
d) The development team members are being well-
informed and they should be authorized to consider the
possible adjustments and enhancements emerging during
the development process [2].

II. Related Work
During the 1980s, a number of conferences in
information systems were devoted to defining, analyzing,
and comparing methodologies, primarily system design
methodologies. At that stage methodologies were
seen as a way to bring control and repeatability to the
development of automated business systems (Olle, Sol, &
Tully, 1983).

By the 1980s and 1990s, methodologies for all aspects of
development were available; however a parallel stream
of critique and empirical research reported the failure or
misuse of methodologies in practice. Parnas and
Clements (1986) advised the software engineering
community to ‘fake it’. Rather than follow the ideal, that
is the rational, systematic way to develop a software
system proposed by SDLC-based methodologies, which
involves writing requirements and design documents
before beginning development, developers should
construct the necessary documentation as system details
emerge during development. In this way, the final
versions of documents describing requirements, design
decisions, and software modules would match the final

version of the delivered system. This brief history of
system development methodologies up until the late
1990s shows a change in thinking within the IS
development research community, from assuming
methodology use is universally beneficial, to a
recognition that methodology use can be problematic. It
also shows that the business environment, with its faster
pace, and new technology environments, such as object-
orientation and the internet, influence methodology
creation. Further, methodologies are an ‘ideal’ that is
seldom achieved in practice, and there is no one universal
methodology appropriate for all types of development. In
the late 1990s, agile methods emerged to contribute to
this landscape.

Table – I Agile Methods by Publication Date

 Agile Method Acronym Key Source
1 Dynamic Systems Development

method
DSDM DSDM (Dynamic Systems

Development Method,
Version 2, 1995)
Stapleton (1997)

2 Crystal methods Crystal Cockburn (1998)
Cockburn (2002)

3 Extreme Programming XP Beck (1999)
Beck (2000)
1st EditionBeck and Andres
(2005) 2nd Edition

4 Adaptive Software Development ASD Highsmith (2000)
5 Scrum Scrum Beedle, Devos, Sharon,

Schwaber, & Sutherland
(1999)
Schwaber & Beedle (2002)

6 Feature Driven Development FDD Palmer & Felsing (2002)
7 Lean Development LD Charette (2002)

Poppendiek & Poppendiek
(2003)

8 EVO EVO Gilb (2005)
9 AgileUP AUP Ambler (2008)

First published online 2005

III. Agile methods

Individual agile methods were created in reaction to
persistent problems in software development not
adequately addressed by traditional system development
methodologies or software engineering techniques, and
the need to expedite software development in the
business and technology environment of the late 1990s
and early 2000s (Beck, 2000; Cockburn, 2002). Agile
methods share a common basis in the practical

experiences of software engineers, and ideas from new
product development literature such as Takeuchi and
Nonaka’s (1986) work identifying how to best manage
projects when developing new products under intense
time-pressure [3][4].
Agile methods produce the first delivery of the project in
one or two weeks, to achieve rapid feedback. To decrease
in change agile methods will invent simple. Agile methods

are based on iterative and incremental methods, so they
improve design issues and quality [5][6].
Definition of Agile method:
Process is agile when :

a) Incremental: rapid iterations and small releases
b) Cooperative: Strong Customer-developer relation
c) Straight: The methods are easy to learn and to

modify with documentation
d) Adaptive: Instant ability to entertain changes

IV. The need for agility:
The business conditions are constantly changing and
technology is rapidly evolving so enterprises must
preserve their freedom of action. They can’t afford to get
locked in by a specific approach to analyzing data, specific
technology architecture, or a specific vendor product
stack. When they will lock the specific approach for a
specific data and technology, then there will not be any
efficiency enhancements. Agility can have different
meanings in different technological contexts [7]. In
business perspective agility means having the ability to
readily entertain new approaches to addressing
competitive challenges as the market changes. For IT,
agility means to enhance the efficiency, the freedom to
change different layers of the technology stack to avoid
getting locked in to a particular method and process.

V. Analyzing Agile Methodology
Agile methods are based on adaptive software
development methods, while traditional SDLC models
(waterfall model, for example) are based on a predictive
approach. In traditional SDLC models, teams work with a
detailed plan and have a full list of characteristics and
tasks that must be completed in the next few months or
the entire life cycle of the product. Predictive methods
completely depend on the requirement analysis and
careful planning at the beginning of the cycle. Any change
that is to be included will go through a strict change
control management and prioritization. The agile model
uses an adaptive approach where there is no detailed
planning and only clear future tasks are those related to
the characteristics that must be developed. The team
adapts to dynamic changes in the product requirements.
The product is frequently tested, minimizing the risk of
major faults in the future. Interaction with the clients is
the strong point of agile methodology and open
communication and minimal documentation are typical
characteristics of the agile development environment.
Teams collaborate closely and often are located in the
same geographical space [9].

Figure 1: The Agile Model Driven Development (AMDD) lifecycle for software projects

Figure 1 depicts the lifecycle of Agile Model Driven
Development (AMDD). During "iteration 0", the first
iteration of an agile project, you need to get your project

organized and going in the right direction. Part of that
effort is the initial envisioning of the requirements and
the architecture so that you are able to answer critical

http://agilemodeling.com/essays/agileAnalysis.htm#Figure1AMDD
http://www.ambysoft.com/essays/agileLifecycle.html
http://agilemodeling.com/essays/amdd.htm
http://agilemodeling.com/essays/amdd.htm
http://www.ambysoft.com/essays/agileLifecycle.html#Cycle0
http://agilemodeling.com/essays/initialRequirementsModeling.htm
http://agilemodeling.com/essays/initialArchitectureModeling.htm

questions about the scope, cost, schedule, and technical
strategy of your project. Details about the business
domain are identified on a just-in-time (JIT) basis during
iterations via initial iteration modeling at the beginning of
each iteration; or by modeling storming throughout the
iteration. Analysis is so important to agilists that we do it
every day.
Although agile methodologies triumph over traditional
ones in several aspects, there are any difficulties in
making them work. One of them is the significant
reduction of documentation and the claim that the
source code itself should be the documentation. [8] Thus,
developers used to agile methods tend to insert more
comments in source code in order to clarify and explain.
They ask lots of questions to the experienced developers

and this may delay completion of the iteration, which can
lead to increased development costs. On the other hand,
traditional methods emphasize documentation in
orientation and clarification of the project for the
development team, so there is no concern about not
knowing the project details or not having a
knowledgeable developer. The fact that agile
development allows changes in requirements in an
incremental way lead to two dependency problems in
design: rigidity and mobility. Rigidity means a change in
the system leads to a cascade of changes in other
modules, while mobility means the inability of the system
to include reusable components because they involve too
much effort or risk.

• Agile Software Analysis Process

Figure 2: Steps for Agile Software Analysis Process

• Composing An Agile Estimating Process
Teams can spend huge amounts of time breaking down
features to create their estimates, but the actual time
needed is usually a vastly different number. An average
software project begins when a team or person outlines a
project and receives approval to go forward. In the first
some stages of a project, someone guesses how long it

will take to deliver. This person may be a salesperson,
project manager, or development manager. They may
make a guess based on their experience, or they may
have some quick chats with seasoned employees and
solicit their opinions [11].Agile estimation techniques
address the shortcomings of the methods used.

http://agilemodeling.com/essays/iterationModeling.htm
http://agilemodeling.com/essays/modelStorming.htm

Figure 2: Steps for Agile Software Analysis Process

VI. Conclusions
This survey paper shows the how the agile software
development is better than other software development
approaches. The efficiency can be achieved and the
performance of agile methodology. As in the traditional
software development the specific methods and
techniques are locked down. Traditional methodologies
concentrate more on Processes, tools, contracts and
plans. In contrast to traditional methods, agile methods
keep emphasis on interaction, working software,
embracing change at any moment of the project,
customer relationships. So this can be concluded that the
agile is more people centric than traditional one. And
these can’t be defined by small set of principles and
methods or techniques.
References

1. Agile Software Development methods-Review and
analysis by Pekka Abrahamsson, Outi Salo, Jussi
Ronkainen and Juhani Warsta.

2. Abrahamsson, P., Warsta, J., Siponen, M.T. and
Ronkainen, J. New Directions on Agile Methods: A
Comparative Analysis, Proceedings of the
International Conference on Software Engineering,
2003 (Oregon, USA).

3. L. Williams and A. Cockburn, ―Agile Software
Development: It‘s about Feedback and Change,‖
IEEE Computer, June 2003, pp. 39-43

4. Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005).
Challenges of migrating to agile methodologies.
Communications of the ACM, 48(5), 72-78.

5. Manifesto for Agile software development;
http://agilealliance.com

6. Lindvall, M., Basili, V. R., Boehm, B., Costa, P.,
Dangle, K., Shull, F., Tesoriero, R.,Williams, L., &
Zelkowitz, M. (2002). Empirical findings in agile
methods. In Proceedings of Extreme Programming
and Agile Methods – XP/Agile Universe Conference
2002, Chicago, IL, 97-207.

7. Agile software development: Evidence from the
field. Alan MacCormackhttp://www.agile develop-
pmentconference.com/2003/files/AlanAgileSoftwar
eJun03.ppt

8. Boehm, B.W. Software Engineering Economics,
1981 (Prentice Hall, Upper Saddle River, New
Jersey)

9. K. Peterson, A Comparison of Issues and
Advantages in Agile and Incremental Development
between State of the Art and an Industrial Case.
Journal of System and Software. 2009

10. Boehm, B., Port, D., & Brown, A. W. (2002).
Balancing plan-driven and agile methods in
software engineering project courses. Computer
Science Education,12(3), 187-195.

11. Meso, P., & Jain, R. (2006). Agile software
development: adaptive systems principles and best
practices. Information Systems Management, 23(3),
19-30.

12. L.R. Vijayasarathy, Agile Software Development: A
survey of early adopters. Journal of Information

http://agilealliance.com/
http://www.agile/

Technology Management Volume XIX, Number 2.
2008

13. Cho, J. (2008). Issues and Challenges of Agile
Software Development with Scrum. Issues in
Information Systems, 9(2), 188-195.

14. M. Poppendieck and T. Poppendieck, Lean Software
Development. Boston: Addison Wesley, 2003.

15. T. Potok and M. Vouk, "The Effects of the Business
Model on the Object-Oriented Software
Development Productivity," IBM Systems Journal,
vol. 36, no. 1, pp. 140-161, 1997.

16. K. Schwaber and M. Beedle, Agile Software
Development with SCRUM. Upper Saddle River, NJ:
Prentice-Hall, 2002.

17. J. Stapleton, DSDM: The Method in Practice,
Second ed: Addison Wesley Longman, 2003.

18. M. Vouk and A. T. Rivers, "Construction of Reliable
Software in Resource-Constrained Environments,"
in Case Studies in Reliability and Maintenance, W.
R. Blischke and D. N. P. Murthy, Eds. Hoboken, NJ:
Wiley-Interscience, John Wiley and Sons, 2003, pp.
205- 231.

19. L. Williams, "The XP Programmer: The Few Minutes
Programmer," IEEE Software, vol. 20, no. 3, pp. 16-
20, May/June 2003.

20. L. Williams and A. Cockburn, "Special Issue on Agile
Methods," IEEE Computer, vol. 36, no. 3, June 2003.

21. L. Williams and R. Kessler, Pair Programming
Illuminated. Reading, Massachusetts: Addison
Wesley, 2003.

