
© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 03 | 17 | April-June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

Implementation of Object Oriented Automated Testing in Matlab using

MLUnit Tool

1
Manoj, Department of CSE RN Engineering College, Computer Science Engineering

2
Ms. Pooja Ahlawat, Department of CSE , Assistant Professor, RN Engineering College

Abstract: Validation and verification of the code is required because of

ever-increasing complexity of embedded software applications, and the

emergence of safety critical applications. Several embedded software

development groups are using models and doing up front engineering

before testing on final product to address this need. Use of old style of

testing late in the development cycle resulted in very expensive release

cycles.

I. Introduction[1]

Object-oriented technology has become more and

more popular in several various contexts. The Object-

oriented paradigm is applied in the areas of

programming languages, user interfaces, databases,

design and specification methodologies.

OOPS based languages are widely applied in

industry, and several commercial applications are

developed and designed and with object oriented

technology.

Object-oriented software quality has undergone a

rapid change during the last years as a consequence,

the attitude towards

Several analysis and design methodologies state that

a well-designed object-oriented system would only

need minimal testing. The object oriented paradigm

has been considered powerful enough to assure

software quality without any additional effort.

It is not enough to guarantee the quality of software

products although object-orientation enforces many

important programming principles, such as

modularity, encapsulation, and information hiding,

Object oriented software contains errors just like

traditional code it is known to both practitioners and

researchers. Due to their peculiarities object oriented

systems present new and different problems with

respect to traditional programs.

II. Quality Assessment

 Research addressing quality assessment lead to the

definition of specific object-oriented metrics. These

metrics provide quality indicators for identifying

parts of the system which are more likely to be error-

prone.

Quality of object-oriented software has been

addressed from two different viewpoints, namely,

quality assessment and quality achievement in the

last years,

When the level of quality of a class, a cluster of

classes, or a system is inadequate, we need a way of

improving it, Quality assessment methods are

complementary to quality achieving techniques. As

far as quality achievement is concerned, it is possible

to identify two main approaches:

Methodology based: These methodologies pay little

attention to verification of the developed system,

according to the underlying hypothesis that a suitable

application of the methodology should lead to well

designed systems, which are easy to maintain.

This methodology involves using techniques and

methodologies that aim at improving the software

development process and specifically address the

analysis, design, and development of object-oriented

systems.

Verification based: using static or dynamic analysis

techniques that targets revealing faults. The

underlying idea is that, despite the effectiveness of

the process, human beings are error-prone and

program will always contain faults. Examples of

static analysis techniques are formal proofs of

correctness and code inspections and testing

techniques are examples of dynamic techniques.

III. Benefits of OOPS
The object-oriented paradigm introduces novel

aspects that have to be specifically addressed while

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 03 | 17 | April-June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

sharing some commonalities with traditional

programming languages,

Inheritance, encapsulation and data hiding raise

visibility problems imply incremental testing

concerns, and polymorphism and dynamic binding

introduce undesirability related issues. The structure

of object-oriented software is different from that of

traditional codes.

In object-oriented codes, procedures (methods) tend

to be small and well understood. The complexity

tends to move from within code modules to the

interfaces between them. Testing at the unit level

tends to be less complex in the object-oriented case

than for traditional procedural systems, and

integration testing becomes necessarily more

expensive as a consequence.

IV. Automated Testing: Process,

Planning, Selection of tools[2]

Manual testing is performed by a human in front of a

computer carefully executing the test steps. Using an

automation tool to execute your test case suite is

Automation Testing.

 The automation software can also enter test data into

the System under Test, compare expected and actual

results and generate test reports.

Test Automation demands considerable investments

of money and resources. Successive development

cycles will require execution of same test suite again

and again.

Using a test automation tool it's possible to record

this test suite and re-play it as required. No human

intervention is required once the test suite is

automated. This improved ROI of Test Automation.

Purpose of Automation is to reduce number of test

cases to be run manually and not remove manual

testing all together.

V. Benefits of Automated Testing

Automated testing is essential due to following

reasons:

 Manual Testing is time and cost consuming

 It’s difficult to test for multi lingual sites

manually

 Automation does not need Human

intervention. You can run automated test

unattended (overnight)

 Automation boosts speed of test execution

 Automation helps boosting Test Coverage

 Manual Testing can become boring and

error prone.

 Test Cases to Automate

Test cases to be automated can be selected
using the following criterion to increase the
automation ROI

 High Risk - Business test cases

 Test cases that are executed again and

again

 Test Cases that are very difficult to perform

manually

 Test Cases are time consuming

The following category of test cases are not suitable

for automation:

 Test Cases that are newly designed and

not executed manually at least once

 Test Cases for which the requirements are

changing frequently

 Test cases which are executed on ad-hoc

basis.

VI. Implementation of Class in MATLAB[5]

Classification systems and design patterns enable

engineers and scientists to make sense of complex

systems and to reuse efforts by others.

Object-oriented programming (OO) applies to

software development the standard science and

engineering practice of identifying patterns and

defining a classification system describing those

patterns.

The OO approach improves your ability to manage

software complexity—particularly important when

developing and maintaining large applications and

data structures by applying classification systems and

design patterns to programming,

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 03 | 17 | April-June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

Class[3]

classdef Syntax

Class definitions are blocks of code that are denoted

by the classdef keyword at the beginning and the end

keyword at the end. Files can contain only one class

definition.

The following diagram shows the syntax of a classdef

block. Only comments and blank lines can precede

the classdef key word.

Sample code to define class

classdef clas1
 properties
 x
 end
 methods
 function p=sq(obj)
 p= obj.x*obj.x
 end
 end
 end

when we run above code then result is as follow

Create object of class

>> y=clas1

y =

 clas1

Assign value of property

>> y.x=9

y =

 clas1

accessing member function of class and passing

object as parameter

>> sq(y)

p =

 81

ans =

 81

>>

VIII. Testing using assert keyword

assert_equals(81,sq(y))

p =

 81

Testing by passing wrong value

assert_equals(82,sq(y))

p =

 81

??? Error using ==> mlunit_fail at 34

Data not equal:

 Expected : 82

 Actual : 81

Error in ==> abstract_assert_equals at 115

 mlunit_fail(msg);

Error in ==> assert_equals at 42

abstract_assert_equals(true, expected, actual,

varargin{:});

VII. Creating Test Case for MLUnit [4]

test_cl1.m

function self = test_cl1(name)

%test_cl1 constructor.

%

% Class Info / Example

% ====================

% The class test_cl1 is the fixture for all tests of test-

driven

% cl1. The constructor shall not be called , but

through

% a test runner.

tc = test_case(name);

self = class(struct([]), 'test_cl1', tc);

test_v1

function self = test_v1(self)

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 03 | 17 | April-June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

y=clas1;

y.x=9;

assert_equals(81,sq(y))

assert_equals(80,sq(y))

Output :

Fig 2.

VIII. Conclusions

There is a major need for more upfront engineering in

today’s embedded software design process. Very

little upfront testing has been done within the

automotive area. With the introduction of executable

modeling tools such as MLUnit this upfront testing is

more feasible. It is the work of the tool vendors to

make this testing technology available and practical

to the user.

Reference

1.Object Oriented software testing by Devid C. Kung

http://www.ecs.csun.edu/~rlingard/COMP595VAV/

OOSWTesting.pdf

2. Automated Testing tools

http://www.guru99.com/automation-testing.html

3. Matlab Documentation

http://in.mathworks.com/help/matlab/matlab_oop/get

ting-familiar-with-classes.html

4.ML-Unit Matlab unit Test Framework

http://sourceforge.net/p/mlunit/mlunit/HEAD/tree/tru

nk/

5. Object Oriented programming in Matlab

http://www.ce.berkeley.edu/~sanjay/e7/oop.pdf

6. Artem, M., Abrahamsson, P., & Ihme, T. (2009).

Long-Term Effects of Test-Driven

Development A case study. In: Agile Processes in

Software Engineering and Extreme Programming,

10th International Conference, XP 2009,. 31, pp. 13-

22. Pula, Sardinia, Italy: Springer.

7. Bach, J. (2000, November). Session based test

management. Software testing and quality

engineering magzine(11/2000),

(http://www.satisfice.com/articles/sbtm.pdf).

8. Bach, J. (2003). Exploratory Testing Explained,

The Test Practitioner 2002,

(http://www.satisfice.com/articles/et-article.pdf).

9. Bach, J. (2006). How to manage and measure

exploratory testing. Quardev Inc.,

(http://www.quardev.com/content/whitepapers/how_

measure_exploratory_testing.pdf).

10. Basilli, V., & Selby, R. (1987). Comparing the

effectiveness of software testing strategies.

IEEE Trans. Software Eng., 13(12), 1278-1296.

11. Berg, B. L. (2009). Qualitative Research Methods

for the Social Sciences (7th International Edition)

(7th ed.). Boston: Pearson Education.

12. Bernat, G., Gaundel, M. C., & Merre, B. (2007).

Software testing based on formal specifications: a

theory and tool. In:Testing Techniques in Software

Engineering, Second Pernambuco Summer School on

Software Engineering. 6153, pp. 215-242. Recife:

Springer.

