
© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 03 | 16 | April-June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

Review on MATLAB based Automated Testing

Implementation,

1
Manoj, Department of CSE RN Engineering College, Computer Science Engineering

2
Ms. Pooja Ahlawat, Department of CSE , Assistant Professor, RN Engineering College

Abstract: Objectives of testing is to detect software failures so that

defects may be discovered and corrected. The scope of software testing

often includes examination of code as well as execution of that code in

various environments and conditions as well as examining the aspects

of code: does it do what it is supposed to do and do what it needs to do.

In the current culture of software development, a testing organization may be separate from the development team.

Testing cannot establish that a product functions properly under all conditions but can only establish that it does not

function properly under specific conditions. There are various roles for testing team members. Information derived

from software testing may be used to correct the process by which software is developed.

[I] Introduction to Automation Testing

Test Automation demands considerable investments

of money and resources. Successive development

cycles will require execution of same test suite

repeatedly. Using a test automation tool it's possible

to record this test suite and re-play it as required.

Once the test suite is automated, no human

intervention is required. This improved ROI of Test

Automation.

Automation Testing means using an automation tool

to execute your test case suite. The automation

software can also enter test data into the System

under Test, compare expected and actual results and

generate detailed test reports.

Objective of Automation is to reduce number of test

cases to be run manually and not eliminate manual

testing all together.

Test automation may be able to reduce or eliminate

the cost of actual testing. A computer can follow a

rote sequence of steps more quickly than a person,

and it can run the tests overnight to present the results

in the morning. However, the labor that is saved in

actual testing must be spent instead authoring the test

program. Depending on the type of application to be

tested, and the automation tools that are chosen, this

may require more labor than a manual approach. In

addition, some testing tools present a very large

amount of data, potentially creating a time

consuming task of interpreting the results.

Things such as device drivers and software libraries

must be tested using test programs. In addition,

testing of large numbers of users is typically

simulated in software rather than performed in

practice.

[II] Tool for automation

Selecting the right tool can be a tricky task.

Following criterion will help you select the best tool

for your requirement-

1. Environment Support

2. Ease of use

3. Testing of Database

4. Object identification

5. Image Testing

6. Error Recovery Testing

7. Object Mapping

8. Scripting Language Used

9. Support for various types of test - including

functional, test management, mobile, etc...

10. Support for multiple testing frameworks

11. Easy to debug the automation software

scripts

12. Ability to recognize objects in any

environment

13. Extensive test reports and results

14. Minimize training cost of selected tools

Tool selection is biggest challenges to be tackled

before going for automation. First, identify the

requirements, explore various tools and its

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 03 | 16 | April-June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

capabilities, set the expectation from the tool and go

for a Proof of Concept.

[III] Framework in Automation

A framework is set of automation guidelines
 which help in

1. Maintaining consistency of Testing

2. Improves test structuring

3. Minimum usage of code

4. Less Maintenance of code

5. Improve re-usability

6. Non Technical testers can be involved in

code

7. Training period of using the tool can be

reduced

8. Involves Data wherever appropriate

Types of Framework

There are four types of framework used in software

automation testing:

1. Data Driven Automation Framework

2. Keyword Driven Automation Framework

3. Modular Automation Framework

4. Hybrid Automation Framework.

[IV]Benefits of automated testing

 Following are benefits of automated testing:

1. 70% faster than the manual testing

2. Wider test coverage of application features

3. Reliable in results

4. Ensure Consistency

5. Saves Time and Cost

6. Improves accuracy

7. Human Intervention is not required while

execution

8. Increases Efficiency

9. Better speed in executing tests

10. Re-usable test scripts

11. Test Frequently and thoroughly

12. More cycle of execution can be achieved

through automation

13. Early time to market

[V] Proposed Implementation

Software engineering Automated Software Testing

for Matlab Software testing can improve software

quality. To test effectively, scientists and engineers

should know how to write and run tests, define

appropriate test cases, determine expected outputs,

and correctly handle floating-point arithmetic.

Using Matlab mlUnit automated testing framework,

scientists and engineers using Matlab can make

software testing an integrated part of their software

development routine.

Write Unit Tests
Assemble test methods into test-case classes

Script-Based Unit Tests

 Write Script-Based Unit Tests

Function-Based Unit Tests

 Write Function-Based Unit Tests

 Write Simple Test Case Using Functions

 Write Test Using Setup and Teardown

Functions

Run Unit Tests
Run test suites in the testing framework

 All tests in a package

 All tests in a class

 All tests in a folder

Analyze Test Results

 Analyze Test Case Results

 Analyze Failed Test Results

[VI] Implementation of Automated testing in

matlab using mlunit

mlunit originally began as an update to mlUnit

(http://sourceforge.net/projects/mlunit/), also

available from MATLAB Central file exchange. The

purpose was to add support for the new "classdef"

style classes in MATLAB 2008a. Creating tests

involves subclassing a class named TestCase, then

adding methods whose names begin with "test".

Inside each method you can use the inherited

validation methods (assert, assertEquals,

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 03 | 16 | April-June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

assertNotEquals) to check for success or failure. All

tests are run automatically and their results recorded

and reported after the run.

Testing Fibonacci function

We all know the Fibonacci series

0 1 1 2 3 5 8 13

In which we always consider the sum of last two

number at third location

Loc1 0

Loc2 1

Loc3 1(Loc1 + Loc2)

Loc4 2(Loc2 + Loc3)

Loc5 3(Loc3 + Loc4)

Loc6 5(Loc4 + Loc5)

Loc7 8(Loc5 + Loc6)

Loc8 13(Loc6 + Loc7)

fib(x)

function y = fib(x)

% Simple queue implementation of Fibonacci

function..

if x < 0 || (int64(x) ~= x)

 error('invalid input: please input only non-negative

integers.');

end

if x < 2, y = x; return; end

q = [0 1];

for k = 2:x

 q = [q sum(q)];

 q(1) = [];

end

y = q(2);

when we call fib function

When assert is used with fib function

Testing fib using mlunit

test_fib.m

function self = test_fib(name)

%test_fib constructor.

%

% Class Info / Example

% ====================

% The class test_fib is the fixture for all tests of the

test-driven

% Fibonacci. The constructor shall not be called

directly, but through

% a test runner.

tc = test_case(name);

self = class(struct([]), 'test_fib', tc);

test_null.m

function self = test_null(self)

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 03 | 16 | April-June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

%test_null checks, whether the return value of fib(0)

is 0.

assert_equals(0, fib(0));

test_value.m

function self = test_value(self)

%test_value tests different values of the fibonacci

function (y = fib(x)).

assert_equals(1, fib(1));

assert_equals(1, fib(2));

assert_equals(2, fib(3));

assert_equals(3, fib(4));

assert_equals(5, fib(5));

assert_equals(8, fib(6));

assert_equals(13, fib(7));

assert_equals(21, fib(8));

assert_equals(34, fib(9));

assert_equals(55, fib(10));

test_value1.m

function self = test_value1(self)

%test_value1 tests different values of the fibonacci

function (y = fib(x)).

assert_equals(0, fib(1));

After Running test tool result will be as follow

after testing following xml file is creating

representing failures, errors, testcases, time take to

test

TEST-@test_fib.xml

<?xml version="1.0" encoding="UTF-8"?>

<testsuite name="@test_fib" errors="0" failures="1"

tests="3" time="0.428" hostname="unknown"

timestamp="2015-04-23T14:33:46">

 <properties/>

 <testcase classname="@test_fib"

name="test_null"/>

 <testcase classname="@test_fib"

name="test_value"/>

 <testcase classname="@test_fib"

name="test_value1">

 <failure><![CDATA[Data not equal:

 Expected : 0

 Actual : 1

In <a href = "matlab:opentoline

('C:\Users\aa\Documents\MATLAB\mlunit\test\@tes

t_fib\test_value1.m',10)">test_value1.m at line

10]]></failure>

 </testcase>

 <system-out/>

 <system-err/>

</testsuite>

References

1. Artem, M., Abrahamsson, P., & Ihme, T. (2009).

Long-Term Effects of Test-Driven

Development A case study. In: Agile Processes in

Software Engineering and Extreme Programming,

10th International Conference, XP 2009,. 31, pp. 13-

22. Pula, Sardinia, Italy: Springer.

2. Bach, J. (2000, November). Session based test

management. Software testing and quality

engineering magzine(11/2000),

(http://www.satisfice.com/articles/sbtm.pdf).

3. Bach, J. (2003). Exploratory Testing Explained,

The Test Practitioner 2002,

(http://www.satisfice.com/articles/et-article.pdf).

4. Bach, J. (2006). How to manage and measure

exploratory testing. Quardev Inc.,

(http://www.quardev.com/content/whitepapers/how_

measure_exploratory_testing.pdf).

5. Basilli, V., & Selby, R. (1987). Comparing the

effectiveness of software testing strategies.

IEEE Trans. Software Eng., 13(12), 1278-1296.

6. Berg, B. L. (2009). Qualitative Research Methods

for the Social Sciences (7th International Edition)

(7th ed.). Boston: Pearson Education.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 07 Issue: 03 | 16 | April-June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

7. Bernat, G., Gaundel, M. C., & Merre, B. (2007).

Software testing based on formal

specifications: a theory and tool. In:Testing

Techniques in Software Engineering, Second

Pernambuco Summer School on Software

Engineering. 6153, pp. 215-242. Recife:

Springer.

