
© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 07 Issue: 02 | 02 | April - June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

IMPLEMENTATION SCALING IMAGE USING BILINEAR INTERPOLATION USING

MATLAB AND ANALYSING THE LIMITATIONS

1
Ritika Wadhwa, Research Scholar, Department of CSE, PPIMT Hisar

2
Mrs. Pallavi, Assistant professor, Department of CSE, PPIMT Hisar

Abstract: Two Dimensional computer graphics is computer-

based generation of digital image/graphics—mostly from two-

dimensional models such as two Dimensional geometric models,

text, & digital image/graphics & by techniques specific to them.

Word may stand for branch of computer science that comprises such

techniques, or for models themselves. Two Dimensional computer graphics are mainly required in applications that

were originally developed upon traditional printing & drawing technologies, such as technical drawing, advertising,

typography, cartography, etc. In those applications, two-dimensional image/graphic is not just a representation of a

real-world object, but an independent artifact with added semantic value, 2D models are therefore considered,

because they give more direct control of image/graphic than three Dimensional computer graphics whose approach

is considered more akin as compare to photography than to typography. In this paper we have make implementation

of scaling using BILINEAR Interpolation and analyzed its limitations.

Keywords: Digital image, 2D, 3D, rotation, Scaling, Computer graphics, Matrix

I. INTRODUCTION

Two Dimensional computer graphics started in 1950s

that is based on vector graphics devices. These were

largely supplanted by raster-based devices in

following decades. PostScript language & X Window

System protocol were landmark developments in

field. Two Dimensional graphics models may

combine geometric models also known vector

graphics, digital image/graphics also called raster

graphics, text to be typeset is defined by content, font

style & colour, position, size & orientation,

mathematical functions & equation. Components can

be modified & manipulated by two-dimensional

geometric transformations such as rotation,

translation, scaling. In object-oriented graphics,

image/graphic is described indirectly by an object

endowed with a self-rendering method a procedure

which assigns colors to image/graphic pixels by an

arbitrary algorithm. Complex models may be built by

combining simpler objects, in paradigms of object-

oriented programming.

2. Image Scaling

 In computer graphics, image scaling is

process of resizing a digital image. Scaling is a non-

trivial process which involves a trade-off between

efficiency, smoothness & sharpness. With bitmap

graphics, as size of an image is reduced or enlarged,

pixels which form image become increasingly

visible, making image appear "soft" if pixels are

averaged, or jagged if not. With vector graphics

trade-off may be within processing power for re-

rendering image, which may be obvious as slow re

rendering with still graphics, or slower frame rate &

frame skipping within computer animation.

Separately from fitting a smaller show area, image

size is most commonly

decreased (or subsampled or

down sampled) within order to produce thumbnails.

Enlarging an image (up sampling or interpolating) is

generally common for creation lesser imagery fit a

bigger screen. Within “zooming” a bitmap image,

this is not possible to discover any more information

within image than already exists, & image quality

inevitably suffers. However, there are several

methods of increasing number of pixels which an

image contains, which evens out appearance of

original pixels.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 07 Issue: 02 | 02 | April - June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

Algorithm

Two standard scaling algorithms are bilinear &

bicubic interpolation. Filters like these work by

interpolating pixel color values, introducing a

continuous transition into output even where

original material has discrete transitions. Although

this is required for continuous-tone images, many

algorithms reduce contrast (sharp edges) within a

way which may be undesirable for line art.

Nearest-neighbor interpolation preserves these sharp

edges, but this increases aliasing (or jaggies; where

diagonal lines & curves appear pixelated). Several

approaches have been developed which attempt to

improve for bitmap art by interpolating areas of

incessant tone, preserve sharpness of horizontal &

vertical lines & smooth all other curves.

 3. BILINEAR FILTERING

It is a texture filtering method used to smooth

textures when showed larger or smaller than they

really are. Maximum of time, when drawing a

textured shape on screen, texture is not showed

exactly as this is stored, without any distortion. since

of this, most pixels will end up needing to use a point

on texture which is "between" texels, assuming

texels are points (as opposed to, say, squares) within

middle (or on upper left corner, or anywhere else;

this does not matter, as long as this is consistent) of

their respective "cells". In Bilinear filtering uses these

plugs to perform bilinear interpolation between four

texels nearest to point which pixel represents (in

middle or upper left of pixel, usually).

Formula

In a mathematical context, bilinear interpolation is

problem of finding a function f(x,y) of form

satisfying

The usual, & generally computationally least

expensive way to compute is through linear

interpolation used 2 times, for example to compute

two functions and satisfying

and then to combine these functions (which are linear

within) into one function satisfying

In computer graphics, bilinear filtering is generally

performed on a texture during texture mapping, or on

a bitmap during resizing. within both cases, source

data (texture or bitmap) may be seen as a two-

dimensional array of values , or several (usually

three) of these within case of full-color data. data

points used within bilinear filtering are 2x2 points

surrounding location for which color is to be

interpolated.

Furthermore, one does not have to compute actual

coefficients of function ; computing value

is enough.

Largest integer not larger than x shall be called ,

& fractional part of shall be . Then,

, & . We have

, , ,

. data points used for interpolation

are taken from texture / bitmap & assigned to ,

, , & .

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 07 Issue: 02 | 02 | April - June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

, are two data

points for subtracting former from latter yields

Because is linear, its derivative is constant &

equal to

Because ,

and similarly,

Because , we have computed

endpoints and needed for second

interpolation step.

The second step is to compute , which may be

accomplished by very formula we used for

computing intermediate values:

In case of scaling, y remains constant within same

line of rescaled image, & storing intermediate

results & reusing them for calculation of next pixel

may lead to significant savings. Similar savings may

be achieved with all "bi" kinds of filtering, i.e. those

which may be conveyed as two passes of one-

dimensional filtering.

In case of texture mapping, a constant x or y is rarely

if ever encountered, & since today's (2000+) graphics

hardware is highly parallelized,

there would be no

time savings anyway.

Another way of writing bilinear interpolation

formula is

4. IMPLEMENTATION OF SCALING IMAGE

USING BILINEAR INTERPOLATION

function [out] = bilinearInterpolation(im, out_dims)

 %// Get some necessary variables first

 in_rows = size(im,1);

 in_cols = size(im,2);

 out_rows = out_dims(1);

 out_cols = out_dims(2);

 %// Let S_R = R / R'

 S_R = in_rows / out_rows;

 %// Let S_C = C / C'

 S_C = in_cols / out_cols;

 %// Define grid of co-ordinates within our image

 %// Generate (x,y) pairs for each point within our

image

 [cf, rf] = meshgrid(1 : out_cols, 1 : out_rows);

 %// Let r_f = r'*S_R for r = 1,...,R'

 %// Let c_f = c'*S_C for c = 1,...,C'

 rf = rf * S_R;

 cf = cf * S_C;

 %// Let r = floor(rf) & c = floor(cf)

 r = floor(rf);

 c = floor(cf);

 %// Any values out of range, cap

 r(r < 1) = 1;

 c(c < 1) = 1;

 r(r > in_rows - 1) = in_rows - 1;

 c(c > in_cols - 1) = in_cols - 1;

 %// Let delta_R = rf - r & delta_C = cf - c

 delta_R = rf - r;

 delta_C = cf - c;

 %// Final line of algorithm

 %// Get column major indices for each point we

wish

 %// to access

 in1_ind = sub2ind([in_rows, in_cols], r, c);

 in2_ind = sub2ind([in_rows, in_cols], r+1,c);

 in3_ind = sub2ind([in_rows, in_cols], r, c+1);

 in4_ind = sub2ind([in_rows, in_cols], r+1, c+1);

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 07 Issue: 02 | 02 | April - June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

 %// Now interpolate

 %// Go through each channel for case of colour

 %// Create output image that is same class as input

 out = zeros(out_rows, out_cols, size(im, 3));

 out = cast(out, class(im));

 for idx = 1 : size(im, 3)

 chan = double(im(:,:,idx)); %// Get i'th channel

 %// Interpolate channel

 tmp = chan(in1_ind).*(1 - delta_R).*(1 -

delta_C) + ...

 chan(in2_ind).*(delta_R).*(1 -

delta_C) + ...

 chan(in3_ind).*(1 -

delta_R).*(delta_C) + ...

 chan(in4_ind).*(delta_R).*(delta_C);

 out(:,:,idx) = cast(tmp, class(im));

 end

Calling Function to find Bilinear Interpolation

im=imread(„ds.jp‟)

out = bilinearInterpolation(im, [270 396]);

figure;

imshow(im);

figure;

imshow(out);

Following output is displayed

Original image

Resized image

5. SCOPE AND CONCLUSION

Bilinear filtering is rather accurate until scaling of

texture gets below half or above double original size

of texture - which is, if any texture was 256 pixels

in separately direction, scaling this to below 128 or

above 512 pixels may make texture look bad, since

of missing pixels or too much smoothness. Often,

mipmapping is used to provide a scaled-down version

of texture for better performance; however,

transition between two differently-sized mipmaps on

a texture in perspective using bilinear filtering may

be very abrupt. Trilinear filtering, though somewhat

more complex, may make this transition smooth

through.

For any quick demo of how a texel may be missing

from a filtered texture, here's a list of numbers

representing centers of boxes from an 8-texel-wide

texture (in black & red), intermingled with numbers

from cores of boxes from a three texel wide down

sampled texture (in blue). red numbers represent

texels which would not be used in calculating 3-texel

texture at all.

0.0625, 0.1667, 0.1875, 0.3125, 0.4375, 0.5000,

0.5625, 0.6875, 0.8125, 0.8333, 0.9375

Special cases

Textures aren't infinite, within general, & sometimes

one ends up with a pixel coordinate which lies

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 07 Issue: 02 | 02 | April - June 2016

Paper is available at www.jrps.in | Email : info@jrps.in

outside grid of texel coordinates. There are a few

ways to handle this:

 Wrap texture, so which last texel within a

row also comes right before first, & last

texel in a column also comes right above

first. This works best when texture is being

tiled.

 Make area outside texture all one color.

This may be of use for a texture designed to

be laid over a solid background or to be

transparent.

 Repeat edge texels out to infinity. This

works best if texture is not designed to be

repeated.

6. REFERENCES

1. Dudgeon, D.E. & R.M. Mersereau,

Multidimensional Digital Signal Processing. 1984,

Englewood Cliffs, New Jersey: Prentice-Hall.

2. Castleman, K.R., Digital Image/graphic

Processing. Second ed. 1996, Englewood Cliffs, New

Jersey:

3. Oppenheim, A.V., A.S. Willsky, & I.T. Young,

Systems & Signals. 1983, Englewood

4. Papoulis, A., Systems & Transforms with

Applications in Optics. 1968, New York:

5. Russ, J.C., Image/graphic Processing Handbook.

Second ed. 1995, Boca Raton, Florida: CRC

6. Giardina, C.R. & E.R. Dougherty, Morphological

Methods in Image/graphic & Signal Processing.

1988, Englewood Cliffs, New Jersey: Prentice-Hall.

321.

7. Gonzalez, R.C. & R.E. Woods, Digital

Image/graphic Processing. 1992, Reading,

Massachusetts:

8. Goodman, J.W., Introduction to Fourier Optics.

McGraw-Hill Physical & Quantum

Electronics Series. 1968, New York: McGraw-Hill.

287.

9. Heijmans, H.J.A.M., Morphological Image/graphic

Operators. Advances in Electronics & Electron

Physics. 1994, Boston: Academic Press.

10. Hunt, R.W.G., Reproduction of Colour in

Photography, Printing & Television,. Fourth ed.

1987, Tolworth, England: Fountain Press.

11. Freeman, H., Boundary encoding & processing,

in Picture Processing & Psychopictorics, B.S. Lipkin

& A. Rosenfeld, Editors. 1970, Academic Press: New

York. p. 241-266.

12. Stockham, T.G., Image/graphic Processing in

Context of a Visual Model. Proc. IEEE, 1972. 60:

13. Murch, G.M., Visual & Auditory Perception.

1973, New York: Bobbs-Merrill Company,

14. Frisby, J.P., Seeing: Illusion, Brain & Mind.

1980, Oxford, England: Oxford University

15. Blakemore, C. & F.W.C. Campbell, On existence

of neurons in human visual system selectively

sensitive to orientation & size of retinal

image/graphics. J. Physiology, 1969.

16. Born, M. & E. Wolf, Principles of Optics. Sixth

ed. 1980, Oxford: Pergamon Press.

17. Young, I.T., Quantitative Microscopy. IEEE

Engineering in Medicine & Biology, 1996.

18. Dorst, L. & A.W.M. Smeulders, Length

estimators compared, in Pattern Recognition in

Practice II, E.S. Gelsema & L.N. Kanal, Editors.

1986, Elsevier Science: Amsterdam. p. 73-80.

19. Young, I.T., Sampling density & quantitative

microscopy. Analytical & Quantitative

Cytology & Histology, 1988. 10(4): p. 269-275.

20. Kulpa, Z., Area & perimeter measurement of

blobs in discrete binary pictures. Computer Vision,

Graphics & Image/graphic Processing, 1977. 6: p.

434-454.

21. Vossepoel, A.M. & A.W.M. Smeulders, Vector

code probabilities & metrication error in

representation of straight lines of finite length.

Computer Graphics & Image/graphic Processing,

22. Photometrics Ltd., Signal Processing & Noise, in

Series 200 CCD Cameras Manual. 1990:

