
© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 06 | 11 | October-December 2015

Paper is available at www.jrps.in | Email : info@jrps.in 1

Study of Requirement of Automated Testing

1Jaya Rani, 2Swati Gupta, AP, CSE Department, RIMT Sonipat

Abstract

With the ever-increasing complexity of embedded

software applications, and the emergence of more

and more safety critical applications, thorough

validation and verification of the code is needed. To

address this need, many embedded software

development groups are using models and doing

upfront engineering before testing on the final

product. Using the old style of testing late in the

development cycle resulted in very long and

expensive release cycles. Ford estimated that 60% of

work tasks were to correct requirements or design

defects that had been released to downstream

developers. With today’s increasing need to get to

market quickly with a safe product, this old style of

testing is not adequate. Ford also used randomly

generated unit test vectors, due to the lack of a

commercially available tool, which only had

approximately 75% coverage. Because of the need

for safe systems, this level of testing is insufficient.

This paper presents requirements for model checking

and unit test generation tools so that the tools are

practical in a large production environment that is

typical in the automotive industry.

1 Introduction

The ever increasing complexity of embedded control

algorithms, the need for shorter development cycles,

and the need for high quality and safety critical

systems have helped move the embedded software

development community towards using graphical

modeling and program specifications. This modeling

allows for a well-defined algorithm from which

verification and validation are practical as well as

provides a mechanism for a high degree of

automation. [1-8]

Today’s tools allow for a broad spectrum of uses for

the models being developed. Some of these uses

include: requirements capture, algorithm

specification, algorithm validation and verification,

documentation, automatic code generation, automatic

unit test vector generation, hardware-in-the-loop

testing, rapid prototype testing, and architecture

specification.

One of the biggest remaining problems is making

these tools practical for the “typical” engineer

working in a production environment. Most of

today’s tools have been used very successfully by

“high end” users, such as researchers and advance

groups. These high end users are typically very

motivated individuals with extensive training and

ample time to learn the tools and experiment with

them until they work. Unfortunately, the production

engineers often have neither the training nor the time

to experiment with the new modeling tools. These

engineers need tools that are easy to learn, intuitive,

and nearly push-button to use. Also, due to their

overbooked workload, these engineers need analysis

tools that can work on a single model file. They do

not have the time to implement and double check the

same algorithm in multiple tools.

Model checking is an emerging technology for

analysis of model based software designs. Model

checking can also be used to automatically generate

test vectors. While unit test vectors can be generated

using specialized algorithms, many of the emerging

automated test vector generation tools use model

checking technology. These tools negate the property

of interest and present it to the model checker. The

counter example returned is the desired test vector,

which exactly exercises the property.

Currently, the standard practice in the automotive

industry is to do a significant amount of in-vehicle

testing but very little upfront testing. This is a very

costly manner of conducting business, and the

industry is trying to move towards a virtual

environment in which most testing is done early in

the development process [7]. From the software

testing point of view, the implication is that any

testing is better than no testing. Thus, a tool that can

help with any piece of automating the model

http://www.jrps.in/
mailto:info@jrps.in

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 06 | 11 | October-December 2015

Paper is available at www.jrps.in | Email : info@jrps.in 2

checking or unit test vector generating would be

useful. However, any testing that is done needs to be

nearly push-button due to schedule constraints in the

production environment. In other words, a highly

automated tool which does part of the testing could

potentially gain widespread use, whereas a partly

automated tool that does everything many not get

used at all.

The rest of this paper will describe the types of model

checking and unit test vectors that are of interest to

the automotive industry, provide a brief overview of

some of the available tools for modeling, model

checking, and generation of unit test vectors, and

describe an effort to make model checking and

automated unit test vector generation practical for the

automotive industry. We believe this also applies to

related embedded industries such as aerospace,

robotics, and medical devices.

2 Types of Desired Model Checking and Unit Test

Vectors

This section presents some model checks and types

of unit test vectors that would be useful.

One particular challenge for the research community

is that many of the models being made, especially for

automotive powertrain applications, contain a

mixture of control and data. The data consists of

mathematical equations, which often have floating

point variables. Most model checking tools cannot

handle such data, since the state space is too large.

Some of the emerging model checking tools are

finding innovative techniques to deal with this large

state space and produce results both in a timely

manner and within the memory available on a

standard PC. One alternative to completely exploring

the entire state space is to use a form of depth-first

search. A second alternative is to abstract floating

point variables into a few boolean conditions, for

instance, replacing x > 4.2 with a boolean

xTooLarge.

Another challenge is that the models can be quite

large. At Ford, a typical powertrain application may

have 5,000-10,000 diagrams [4]. Each diagram

consists of a number of “basic” blocks such as gain

and sum blocks. Depending on the item under test,

the test tool may only need to deal with a small piece

of the total application. Some of these pieces can be

quite big as well. The test tools, while utilizing a

minimum of time and computer memory, will need to

analyze large models.

“Passive” Model Checks

The goal of model checking is to check that the

specification is sound. One set of checks that are

important can be termed “passive” checks, that is, the

tester does not need to specify anything beyond the

original model. They are predefined and commonly

agreed upon. Some of these checks include: all states

reachable, no unnecessary states, no graphical

dependencies, all outcomes accounted are for, no

writes before a definition, no algebraic loops, and

array indexes are all within bounds. In addition to

helping validate the specification, passive checks

may help the practical economics, too.

Automotive applications are extremely cost sensitive.

As a result adding off-chip memory is only done in

exceptional cases, usually requiring the approval of

someone high in the management chain. The

preference is for the entire program to reside on-chip.

Even though current microprocessors have more

memory than their predecessors, wasting code is very

undesirable. In can force the use of more chips.

Consequently, identifying and removing unreachable

or unnecessary states increases the efficiency of the

code implementation, especially when an automatic

code generation tool is used.

Some tools, such as Matlab’s®1 Stateflow™ [11],

allow for the graphical position of model elements to

determine how the model executes. This is inherently

dangerous when the models are also used for

documentation since apparently cosmetic changes in

the layout may lead to subtle behavioral changes.

This type of check should be optional as it may be

acceptable and even needed by certain groups.

For consistency, all outcomes of an expression

should be accounted for. For example, if a function

can return three values, but the specification only

checks for two or has an extra check for a fourth

return value, an error should be flagged. Using the

traditional data flow concepts, a write to a variable

should not occur before that variable is defined. Also,

two writes before a use may be flagged as a warning

of possible suspicious behavior.

Most tools, especially those that provide an

executable specification, will flag algebraic loops

before running a simulation. For those tools that do

not have this built in, the model checker should

1 Reference to specific products, brands, or firms is

for information purposes only; no endorsement or

recommendation by the National Institute of

Standards and Technology, explicit or implicit, is

intended.

http://www.jrps.in/
mailto:info@jrps.in

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 06 | 11 | October-December 2015

Paper is available at www.jrps.in | Email : info@jrps.in 3

perform this check. Another safety check is to ensure

that array indexes are within the bounds for the given

variable.

“Active” Model Checks

The next category of model checks can be termed

“active” tests in that user input is required. For this

case, an easy-to-use GUI is needed so the tester can

input the checks in an intuitive, or at least easily

learned, language. Most model checking tools, such

as Z or SMV, require a very specialized input format,

which is unfamiliar to the typical production

engineer. Model checking is more traditionally used

for these kind of active tests. For example, can states

NorthSouthGreen and EastWestGreen ever be active

at the same time, or can variable X ever increase

more than five mi/hr in one step?

For practicality, a GUI should allow the tester to

create the desired checks. These tests should be able

to be saved to a file for future use.

Unit Test Vectors

One way to break down the problem of testing into

manageable pieces is use different coverage levels for

the test vectors. The most common coverage levels

are statement coverage, decision coverage, MC/DC

coverage [9], and some form of all paths [10].

Another coverage type is boundary values; see

definition below. A tool is needed in which the tester

can select the desired coverage level and for which a

minimal set of tests should be generated to

accomplish the selected coverage criteria. The

different coverage levels and a minimal set of test

vectors have the same end purpose: identify errors in

a minimal fashion. Due to time constraints, if the test

engineers get multiple tests that fail for the same

reason, they will probably get frustrated and stop

using the tool. Coverage levels allow the tester to

progressively increase the thoroughness of the

testing. Hopefully the less stringent coverage levels

identify major bugs. Once those are fixed, the more

thorough coverage levels will find the more subtle

bugs. The more thorough coverage levels typically

take longer for the tools to generate the test vectors.

Therefore, by starting with the lower coverage levels,

the more time consuming tests can be run fewer

times, saving overall testing time. Also, producing a

minimal set of test vectors for a given coverage

reduces time to execute tests and analyze the results

of each test.

The coverage levels listed are the standard coverage

measures that have been defined in the literature for

years [10]. However, these are defined for testing the

source code. These coverage levels will need to be

modified to apply to models. For data flow models,

such as gains, addition, and multiplication, the

definitions are straightforward to convert. Special

care should be taken for blocks that require control

logic to implement, e.g., a “saturation” block. For

branch coverage, test vectors need to make the input

above the upper saturation limit, below the lower

saturation limit, and between the two limits.

The boundary value coverage is intended to test the

values just above and below a decision value, such

as, x > 10. If x is an integer, the values that should be

tested are 9, 10, and 11. If x is a floating point

variable, the values should be 10 + delta, where delta

could be a user defined quantity.

For state machines, the standard coverage measures

need some redefinition. For example, statement

coverage can be redefined as touching every state or

using every transition between the states. The mixing

of data and control flow is particularly important for

state machines, as many of the transitions depend on

variables which are potentially calculated outside of

the state machine.

Notice that to test state machines, a sequence of test

vectors is needed. Some testing tools expect to be

told the state variable and set this state variable to the

desired state for the test in question. This approach

does not work when an unknown source, such as a

person, is generating the code for this state machine.

Thus, the test vector generator tool needs to produce

a sequence of test vectors that starts with the default

state and progresses through the state machine to get

to the state under test. Another tool that would be

beneficial is one where the tester can specify the

desired end state. This will place the model in the

desired state and keep the rest of the model “legal,”

while letting the tester manually continue the testing

from this point.

3 Modeling Tools

This section outlines some of the major modeling

tools that are used in production environments. The

goal is to provide a feel for the modeling tools with

which analysis tools need to be compatible to be

successful. As stated above, analysis tools that

require a new model are less likely to be successful

because replacing an existing modeling tool,

especially in a big organization, is unlikely due to the

large amounts of learning time, training costs, tool

costs, process changes, and “customized” glue code

support that was needed to get the original modeling

tool used. In addition production engineers are

http://www.jrps.in/
mailto:info@jrps.in

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 06 | 11 | October-December 2015

Paper is available at www.jrps.in | Email : info@jrps.in 4

typically overworked and do not want to take the

time to learn a new tool, and new tools are not trusted

until they have undergone a lengthy prove-out period.

These constraints apply mostly to a large production

organization. Typically, the smaller the organization

and the more research focused the group is, the more

open they are to new modeling tools.

Matlab® [11] is becoming the de-facto standard for

modeling control algorithms, especially within the

automotive powertrain area. Many major automotive

companies such as Ford, GM, and Toyota appear to

be using Matlab® or moving towards using it. As a

result, a number of automotive suppliers are also

using Matlab®, and it also appears to have significant

use within the aerospace industry.

MATRIXx [12] had some pockets of use, but with

the recent acquisition by The Mathworks™ of

distribution rights to MATRIXx (posting on The

Mathworks™ web page dated 2/20/2001), it appears

that MATRIXx may be getting phased out and no

longer used.

ETAS’s ASCET-SD [13] appears to have a following

with the German automotive companies and some

following in the U.S. as well.

Within automotive body electronics, anything that is

not powertrain, I-Logix’s Statemate [14] appears to

have some use.

Rational’s Rose [15] appears to be the most popular

UML tool at this time. Although popular in the pure

software development community, it does not appear

to be mainstream in automotive, although they seem

to be starting to use UML.

There are many other tools in use, but the above tools

appear to be the more popular tools with Matlab®

Simulink® and Stateflow™ being the most popular.

4 Model Checking & Automated Unit Test Vector

Generation Tools

This section presents some model checking and unit

test generation tools. We provide a brief description

of the tools along with any of the above modeling

tools to which they connect. The purpose of this is to

provide a brief overview of what exists today, to

show how the tool companies are trying to make their

tools applicable to wider audiences, and to give a feel

for the vast panorama of tools that designers already

have to deal with.

ADI, Applied Dynamics International, has a tool

called AUTT [16] that will produce test vectors from

a BEACON specification. The literature states: that

the tool will report coverage achieved, not achieved,

possibly achieved but not easily proven, overflow

and underflow information, and identify dead code;

coverage measures include MC/DC (and this

statement and decision coverage), boundary value,

table, stub, mathematical stressing, inputs and output

stressing. ADI also has a tool to convert from

Matlab® Simulink® and Stateflow™ to BEACON.

BEACON can also generate code.

T-VEC Technologies Incorporated has a tool called

T-VEC [17] that will produce test vectors from a T-

VEC specification. The literature states that T-VEC:

performs automated model analysis, test vector

generation (satisfies MCDC), test coverage analysis,

and test driver generation to eliminate many manual

and error-prone activities involved in verification and

testing. T-VEC Technologies also has a tool to

convert from MATRIXx to T-VEC.

Siemens has a tool called VALID that will analyze a

model for consistency and also produce test vectors.

VALID is intended to model the coordination

between components. Their claim is that while UML

allows for this type of modeling with message

passing between state machines, VALID makes this

type of modeling much easier. The tool claims to:

check for deadlock, livelock, reachability, and

controllability; produce test vectors for event and

state coverage; generate production code; generate

documentation; and generate a test harness and

execute the tests. The tool also allows the user to

specify properties to be checked in the model. An

add-on has been developed so that VALID diagrams

can be imported into Rational Rose.

IAR has a tool called visualSTATE® [18] that will

analyze a visualSTATE® model. The literature

claims that the tool can: check that all transitions are

reachable, what states can never be exited, conflicting

behavior, only explicitly defined state transitions can

take place; user supplied questions of the model;

simulate the model; create a prototype for testing;

generate code; measure the test coverage and profile

the application; perform regression testing; and create

documentation.

EDAptive Computing has a tool called VectorGen™

[19] that will produce test vectors from a Rosetta

specification. They have an add-on to the Mentor

Graphics Renoir product [25] that allows for a

graphical way to simplify the creation of a Rosetta

http://www.jrps.in/
mailto:info@jrps.in

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 06 | 11 | October-December 2015

Paper is available at www.jrps.in | Email : info@jrps.in 5

specification. EDAptive is also developing their own

graphical interface to allow the creation of a Rosetta

specification.

Reactive Systems has a tool called Reactis [20] that

will analyze the model and also produce test vectors.

The literature claims that the tool can: check the

model for undefined variables, type errors, missing

cases, non determinism, dead code, and deadlock;

check for user supplied questions of the model;

generate test vectors for decision coverage, statement

coverage, and MC/DC coverage; simulate the model;

generate code; and generate custom run-time

monitors from the model. The models can be

developed with Reactive System’s proprietary

notation. Their literature also states that models (or

sub-components of a model) can be developed in The

Mathworks® Simulink® and Stateflow™, I-Logix

StateMate, Teleogics SDL, and Rational’s UML state

machine notation.

ATTOL [21] has some test tools and are developing a

tool that will generate test vectors from both

Simulink® and MATRIXx. According to the

literature, the existing tools: measure and display the

code coverage; automatically generates a test harness

and provides an execution environment and reporting

mechanism; and an integration and validation test

platform for any message-based distributed systems,

including OSEK.

I-Logix has a couple of tools called Statemate and

Rhapsody [14]. I-Logix has partnered with OFFIS

Systems and Consulting GmbH, a spin-off company

to OFFIS, to add model checking and automatic test

generation capabilities to Statemate and Rhapsody.

NIST, the U.S. National Institute of Standards and

Technology, has developed some test tools [22] that

produce test vectors from an SMV specification.

NIST is also working with the below

Simulink®/Stateflow™ Intermediate Representation

project to allow their tools to work with a Matlab®

specification.

Bruce Krogh, of Carnegie Mellon University [23], is

applying model checking and generation of test

vectors to Matlab® models. One tool, SF2SMV [24],

converts Stateflow™ models to SMV so model

checking can be applied. Another tool works directly

with a Simulink® and Stateflow™ model to generate

test vectors. Krogh is also working with the

Simulink®/ Stateflow™ Intermediate Representation

project.

5 Simulink®/Stateflow™ Intermediate

Representation

Many analysis tool companies and researchers would

like to have connectivity to Matlab® Simulink® and

Stateflow™. In addition, designers cannot take the

time to rewrite and revalidate specifications for every

tool and keep the different specifications in

agreement when they change. While The

Mathworks™ has kept the tool very open,

deciphering some of the semantic meaning of the

models is not an easy task. Moreover some

semantics, such as the order of evaluation dictated by

the graphical layout, are implicit and hard to

reconstruct. Thus, creating a translator from

Matlab® to another tool is a very time and labor-

intensive activity. A group of researchers and tool

users realized this issue and have formed an informal

consortium [26] to address this. The group

membership is open and slowly growing. Some of the

current members are Ford, GE, NIST, Carnegie

Mellon University, Vanderbilt University, TriPacific,

and New Eagle Software. Other companies, such as

Motorola Virtual Garage, GM, Honeywell, Lockheed

Martin, Siemens, DiamlerChrysler, and Emmeskay,

have expressed varying degrees of interest.

The goal of this consortium is to define an

intermediate representation (IR), create a working

demonstration of converting from Matlab® to the IR,

and to create an API that will easily allow a tool

company to develop a translator from the IR to their

tool.

The IR will have an additional feature that should

expand the capability of Matlab®. Matlab® is a very

good tool for doing controls work. However, it is not

as good for tasks like software design and timing

analysis. Matlab® has placeholders for user defined

annotations, and the IR will use these annotations to

add extra information that analysis tools need. The

model creator can either enter these annotations

directly, or one of the analysis tools can add the

annotations to the model. An example of this is as

follows: 1) a controls engineer creates a control

algorithm, 2) a programmer adds software

implementation information, such as variable names,

types, scope, and file names, as annotations 3) an

automatic code generation tool produces the

production level code 4) a test vector tool produces

test vectors to stress the code from a chronometrics

point of view 5) a timing accurate simulator uses the

code and the test vectors to produce timing values

that get placed back into the model as annotations 6)

a timing analysis tool uses the timing annotations to

determine if the model is schedulable or not.

http://www.jrps.in/
mailto:info@jrps.in

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 06 | 11 | October-December 2015

Paper is available at www.jrps.in | Email : info@jrps.in 6

Thus, this consortium is developing a mechanism to

make various tools and research ideas practical for

the engineer who is working on real problems in a

production environment using Matlab® and the

modeling tool. It is envisioned that this work will be

used in many static and dynamic analysis projects,

both research and commercial, academic and

industrial, theoretical and applied.

6 Conclusions

There is a significant need for more upfront

engineering in today’s embedded software design

process. Within the automotive area, very little

upfront testing has been done. With the introduction

of executable modeling tools such as MLUnit this

upfront testing is more feasible. It is the job of the

tool vendors to make this testing technology available

and practical to the end user.

Due to the constraints placed on the production

engineers, principally limited time, the test tools need

to be: nearly push-button to use, intuitive to learn,

and connect to the tools that they are already using.

Some additional characteristics that will make the test

tools practical include: identify any error just once,

allow the user to select the coverage level of interest,

minimize the time to check the model or generate the

test vectors, use the language of the production

engineer, run on a standard desktop PC, generate a

sequence of test vectors for testing state machines,

and handle large models and models that consist of

both data and control flow with a large state space.

These challenges may seem daunting for the tool

vendors, but providing a partial solution is better than

no testing at all. And many tools are on the verge of

being practical in today’s production environment.

References

1. Biezer, B., “Software Testing Techniques”,

Second Edition, International Thomson

Computer Press, 1990

2. Chilenski, J. J., Miller, S., “Applicability of

modified condition/decision coverage to

software testing”, 1994, Software

Engineering Journal

3. Butts, K., Toeppe, S., Ranville, S.,

“Specification and Testing of Automotive

Powertrain Control System Software using

CACSD tools”, 1998, Proceedings of the

17th AIAA/IEEE/SAE Digital Avionics

System Conference

4. Butts, K., et. al., “Automotive Powertrain

Control Development Using CACSD”,

Perspectives in Control: New Concepts and

Applications, Tariq Samad (ed.), IEEE

Press, 1999.

5. Toeppe, S., Ranville, S., “Model Driven

Automatic Unit Testing Technology: Tool

Architecture Introduction and Overview”,

1999, Proceedings of the 18th

AIAA/IEEE/SAE Digital Avionics System

Conference

6. Toeppe, S., Ranville, S., “An Automated

Inspection Tool For a Graphical

Specification and Programming Language”,

1999, Quality Week Conference

7. Toeppe, S., Ranville, S., Bostic, D.,

Rzeimen, K., “Automatic Code Generation

Requirements For Production Automotive

Powertrain Applications”, 1999, IEEE

International Symposium on Computer

Aided Control System Design

8. Toeppe, S., Ranville, S., Bostic, D., Wang,

C., “Practical Validation of Model Based

Code Generation for Automotive

Applications”, 1999, Proceedings of the 18th

AIAA/IEEE/SAE Digital Avionics System

Conf.

9. Patel, S., Smith, P., Sun, W., Ramanan, R.,

Donald, H., Toeppe, S., Ranville, S., Bostic,

D., Butts, K., “CACSD in Production

Development: An Engine Control Case

Study”, 2000, Global Powertrain Conference

10. Toeppe, S., Ranville, S., Bostic, D.,

"Automating Software Specification, Design

and Synthesis for Computer Aided Control

System Design Tools", 2000, Proceedings of

the 19th AIAA/IEEE/SAE Digital Avionics

System Conf.

http://www.jrps.in/
mailto:info@jrps.in

