
© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 03 | July-September 2015

Paper is available at www.jrps.in | Email : info@jrps.in

DATA STREAMING USING KERNEL SOCKET

MODULE TO OVERCOME LIMITATIONS OF FTP
1
Pankaj Kumar,

2
Ms. Manisha, Department Of Computer Science &

Engineering , RN College Of Engineering & Technology

Abstract: A socket serves as a communication end point

between two processes. One process is known as server and

other as client. Server programs create sockets, bind to well-

known ports, listen and accept connections from clients. Servers are usually designed to accept

multiple connections from clients—they either fork a new process to serve each client request

(concurrent servers) or completely serve one request before accepting more connections

(iterative servers). Client programs, on the other hand, create sockets to connect to servers and

exchange information.

Keywords: FTP, Port, Socket, Server, Client, Linux, HTTP, TCP, SMTP

[I] Introduction To File Transfer Protocol

Most of the file transfer protocols between

two Linux systems are implemented using

network data transfer. These all programs

are written in user mode and use the system

calls provided by the Linux kernel to

perform various operations like network

read and write. Although this is the

traditional method of writing programs,

there are performance issues. In specific

research and high-performance computing

environments, there is a need for achieving

data transfers at great speed without any

delay. This can be achieved if we implement

the file transfer protocol in kernel space

instead of user space. I took the FTP

protocol for this case and implemented the

FTP protocol in kernel space. There are

some difficulties to do kernel programming

and need to take extreme care for same. FTP

transfers involve two TCP connections. The

first control connection goes from the FTP

client to port 21 on the FTP server. This

connection is used for logon and to send

commands and responses between the

endpoints. A data transfer (including the

output of “ls” and“dir” commands) requires

a second data connection.

The data connection is dependent on

the mode that the client is operating.

The File Transfer Protocol (FTP) was one of

the first efforts to create a standard means of

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 03 | July-September 2015

Paper is available at www.jrps.in | Email : info@jrps.in

exchanging files over a TCP/IP network, so

the FTP has been around since the 1970's.

The FTP was designed with as much

flexibility as possible, so it could be used

over networks other than TCP/IP, as well as

being engineered to have the capability with

exchanging files with a broad variety of

machines.

The base specification is RFC 959 and is

dated October 1985. There are some

additional RFCs relating to FTP, but it

should be noted that even as of this writing

(December 2001) that most of the new

additions are not in widespread use. The

purpose of this document is to provide

general information about how the protocol

works without getting into too many

technical details. RFC 959 should be

consulted for details on the protocol.

[II] Limitation Of Ftp

The disadvantage of anonymous FTP is that

you have little control over who accesses

your FTP server or how often they do it. If

you have particularly popular file

downloads, it can place quite a load on the

server. For this reason, many organization

with limited resources have chosen

alternatives like BitTorrent to distribute

large files. The scope of this work is to

achieve desired speed and highly secured

file transfer system so that the following

disadvantages of FTP can be eradicated.

It doesn't have a secure protocol.

 It has no username protection for its

users.

 There is no packet sniffing for this

application.

[III] Objective Of Research

Sending and receiving large files internally

and externally has become an integral part

of a company's communication system.

Companies employ different file sharing

solutions for exchanging data and

facilitating collaboration between customers,

clients, employees and partners. Most

prevalent file sharing solutions include

email services, FTP, web-based services and

in many cases, mailing documents via

overnight shipping services. Each of these

solutions comes with their own set of

advantages and disadvantages - some

drawbacks may lead to security risk and

limitations, leading to a less successful

handshake between the company and its

client. The aim of the this work is enhance

the efficiency of normal file transfer

protocol implementation so that it can be

used to achieve maximum speed and provide

a kernel based security.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 03 | July-September 2015

Paper is available at www.jrps.in | Email : info@jrps.in

The purpose of work is to design a kernel

module equivalent to the features of normal

ftp with the added advantage of being fast

and secure.

Fig1. File Sending and receiving Host

[IV] User Mode And Kernel Mode

CPU usage is generally represented as a

simple percentage of CPU time spent on

non-idle tasks. But this is a bit of a

simplification. In any modern operating

system, the CPU is actually spending time in

two very distinct modes:

Kernel Mode

In Kernel mode, the executing code has

complete and unrestricted access to the

underlying hardware. It can execute any

CPU instruction and reference any memory

address. Kernel mode is generally reserved

for the lowest-level, most trusted functions

of the operating system. Crashes in kernel

mode are catastrophic; they will halt the

entire PC. In Kernel mode, the executing

code has complete and unrestricted access to

the underlying hardware. It can execute any

CPU instruction and reference any memory

address. Kernel mode is generally reserved

for the lowest-level, most trusted functions

of the operating system. Crashes in kernel

mode are catastrophic; they will halt the

entire PC.

User Mode

In User mode, the executing code has no

ability to directly access hardware or

reference memory. Code running in user

mode must delegate to system APIs to

access hardware or memory. Due to the

protection afforded by this sort of isolation,

crashes in user mode are always

recoverable. Most of the code running on

your computer will execute in user mode.

http://www.codinghorror.com/blog/archives/000873.html
http://www.codinghorror.com/blog/archives/000873.html

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 03 | July-September 2015

Paper is available at www.jrps.in | Email : info@jrps.in

It's possible to enable display of Kernel time

in Task Manager, as I have in the above

screenshot. The green line is total CPU time;

the red line is Kernel time. The gap between

the two is User time.

These two modes aren't mere labels; they're

enforced by the CPU hardware. If code

executing in User mode attempts to do

something outside its purview-- like, say,

accessing a privileged CPU instruction or

modifying memory that it has no access to --

a trappable exception is thrown. Instead of

your entire system crashing, only that

particular application crashes. That's the

value of User mode.

x86 CPU hardware actually provides

four protection rings: 0, 1, 2, and 3. Only

rings 0 (Kernel) and 3 (User) are typically

used. In User mode, the executing code has

no ability to directly access hardware or

reference memory. Code running in user

mode must delegate to system APIs to

access hardware or memory. Due to the

protection afforded by this sort of isolation,

crashes in user mode are always

recoverable. Most of the code running on

your computer will execute in user mode.

[V] DATA TRANSFER USING SOCKET

IN LINUX

Except few data transfer protocols all

protocols implementation’s in Linux are

done in user space which uses the system

calls provided by Linux kernel to perform

various operations like read and write on

network port. But this has limitation in

regard of performance. So in this

implementation, Client and server programs

are implemented in Linux kernel mode.

To execute user programs in kernel mode,

Kernel Mode Linux has a special

start_thread (start_kernel_thread) routine,

which is called in processing execve(2) and

sets registers of a user process to specified

initial values. The original start_thread

routine sets CS segment register to

__USER_CS. The start_kernel_thread

routine sets the CS register to

__KERNEL_CS. Thus, a user program is

started as a user process executed in kernel

mode.

The biggest problem of implementing

Kernel Mode Linux is a stack starvation

problem. Let's assume that a user program is

executed in kernel mode and it causes a page

fault on its user stack. To generate a page

fault exception, an IA-32 CPU tries to push

several registers (EIP, CS, and so on) to the

same user stack because the program is

http://en.wikipedia.org/wiki/Ring_(computer_security)

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 03 | July-September 2015

Paper is available at www.jrps.in | Email : info@jrps.in

executed in kernel mode and the IA-32 CPU

doesn't switch its stack to a kernel stack.

Therefore, the IA-32 CPU cannot push the

registers and generate a double fault

exception and fail again. Finally, the IA-32

CPU gives up and reset itself. This is the

stack starvation problem.

[VI] Results And Discussions

We have examined the performance of

Linux under various load conditions and

havealso analyzed how it reacts to changes

in load. According to our experiments we

have obtained the following results.

• Under moderate loads a 10Mbps ethernet

poses a performance bottleneck.

• For the case of transferring different files

we find that the 8MB RAM becomes a

bigger bottleneck than the ethernet with just

4 connections. The rate of transfer reduces

by less than 30% when number of

connections are doubled.

This means that Linux scales quite well with

load.

• For the case of transferring same files we

find that the memory is sufficient for around

16 connections. Memory would pose a

bottleneck for more number of connections.

• Transferring different files reduces the

performance but the fall in performance

reduces as the files become very large.

• In the loop back experiment we discovered

that there was a very large fall in transfer

rate from 2 to 4 connections when

transferring different files.

From these observations we can conclude

that Linux does scale quite well, and will be

able to handle heavy loads. This

implementation of FTP protocol is in kernel

space but only basic command of FTP

protocol is implemented. It can be used for

high-performance content serving and are

well suited for environments that demand

data transfer at high rate. Scientific data sets

are growing at exponential rates, and new

data movement protocols and system

interfaces are needed to keep up. TCP and

UDP using traditional UNIX sockets use too

much CPU to be able to scale to the data

rates needed for tomorrows scientific

workflows. Our experience on cluster test

bed have shown that the kernel mode FTP

implementation has a better transfer rate .A

graph showing the quantitative comparison

of the normal FTP and kernel mode FTP is

depicted in the following diagram.

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 03 | July-September 2015

Paper is available at www.jrps.in | Email : info@jrps.in

Fig 2: The white line shows the efficiency

of kernel mode FTP

[VII] Future Work

a. Implement the other FTP commands in

FTP server and FTP client.

b. Measure the performance after

comparison of user space FTP and our

program.

c. Run the program in very high

performance environment

d. Run the program in the environments that

demand very high data transfer.

Reference

1. For FTP RFC

 http://tools.ietf.org/html/rfc959

2. Wiki for FTP

http://en.wikipedia.org/wiki/File_Tra

nsfer_Protocol#cite_note-for-1

3. Wiki of full FTP Client command

http://en.wikipedia.org/wiki/List_of_FTP_co

mmands

 4. Complete List of Server return code.

http://en.wikipedia.org/wiki/List_of_FTP_se

rver_return_codes

 5. Network programming book. Unix

Network Programming, Volume 1 by W.

Richard Stevens, Bill Fenner, Andrew M.

Rudoff

 6. To download the Linux Kernel Source

code. https://www.kernel.org/

 7. For network internal of Linux.

Understanding Linux Network Internals by

Christian Benvenuti.

 8. [Bac86] Maurice J. Bach. The Design of

the UNIX Operating System. Prentice-Hall,

Englewood Cliffs, NJ 07632, USA, 1986.

 9. [PR85] J. Postel and J. Reynolds. File

transfer protocol (ftp). Technical Report

RFC-959, Network Working Group, 1985.

 10.[Ste92] Richard Stevens. Advanced

Programming in the UNIX Environment.

Addison-Wesley,Reading, MA, USA, 1992.

11. [TCT] Theodore Ts´o, Remy Card, and

Stephen Tweedie. Design and

implementation of the second extended

filesystem. In Proceedings of the First Dutch

International Symposium on Linux.

http://tools.ietf.org/html/rfc959
https://www.kernel.org/

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

 ISSN: 2278-6848 | Volume: 06 Issue: 03 | July-September 2015

Paper is available at www.jrps.in | Email : info@jrps.in

12.[WS91] Larry Wall and Randal L.

Schwartz. Programming Perl. Nutshell

Handbooks. O’Reilly and Associates, Inc.,

632 Petuluma Avenue, Sebastopol,

