
    © INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR                                                                               

      ISSN: 2278-6848   |   VOLUME:  06   ISSUE: 03   |   JULY-SEPTEMBER 2015 

                                                                                                      

______________________________________ 
Paper is available at  www.jrps.in   |    Email : info@jrps.in 

Page | 1  

Automated testing in Object oriented and Functional programming approach 

using Matlab 

*Sarita R.N. College of education and technology 

** Sangeeta (Asst. Prof. in CSE) R.N. College of education and technology 

Abstract:  Object-oriented languages are good when you have 

a fixed set of operations on things, and as your code evolves, 

you primarily add new things. This can be accomplished by 

adding new classes which implement existing methods, and the 

existing classes are left alone. Functional languages are good 

when you have a fixed set of things, and as your code evolves, 

you primarily add new operations on existing things. This can be accomplished by adding new functions 

which compute with existing data types, and the existing functions are left alone. Here in this paper we 

will compare object oriented and functional testing. 

 

[I]Functional programming approach 

In computer science, functional programming 

is a programming paradigm—a style of building 

the structure and elements of computer 

programs—that treats computation as the 

evaluation of mathematical functions and avoids 

changing-state and mutable data. It is a 

declarative programming paradigm, which 

means programming is done with expressions. In 

functional code, the output value of a function 

depends only on the arguments that are input to 

the function, so calling a function f twice with 

the same value for an argument x will produce 

the same result f(x) each time. Eliminating side 

effects, i.e. changes in state that do not depend 

on the function inputs, can make it much easier 

to understand and predict the behavior of a 

program, which is one of the key motivations for 

the development of functional programming. 

Functional programming has its roots in lambda 

calculus, a formal system developed in the 

1930s to investigate computability, the 

Entscheidung’s problem, function definition, 

function application, and recursion.  

Many functional programming languages can be 

viewed as elaborations on the lambda calculus. 

Another well-known declarative programming 

paradigm, logic programming, is based on 

relations. 

[II] Object Oriented programming Approach 

Object-oriented programming (OOP) is a 

programming paradigm based on the concept of 

"objects", which are data structures that contain 

data, in the form of fields, often known as 

attributes; and code, in the form of procedures, 

often known as methods.  

A distinguishing feature of objects is that an 

object's procedures can access and often modify 

the data fields of the object with which they are 

associated (objects have a notion of "this").  

In OO programming, computer programs are 

designed by making them out of objects that 

interact with one another.
  

There is significant diversity in object-oriented 

programming, but most popular languages are 

class-based, meaning that objects are instances 

of classes, which typically also determines their 

type. 

Many of the most widely used programming 

languages are multi-paradigm programming 

languages that support object-oriented 

programming to a greater or lesser degree, 

typically in combination with imperative, 

http://www.jrps.in/
mailto:info@jrps.in


    © INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR                                                                               

      ISSN: 2278-6848   |   VOLUME:  06   ISSUE: 03   |   JULY-SEPTEMBER 2015 

                                                                                                      

______________________________________ 
Paper is available at  www.jrps.in   |    Email : info@jrps.in 

Page | 2  

procedural programming. Significant object-

oriented languages include Python, C++, 

Objective-C, Smalltalk, Delphi, Java, Swift, C#, 

Perl, Ruby and PHP. 

[III] Real-world modeling and relationships 

OOP can be used to associate real-world objects 

and processes with digital counterparts. 

However, not everyone agrees that OOP 

facilitates direct real-world mapping (see 

Criticism section) or that real-world mapping is 

even a worthy goal; Bertrand Meyer argues in 

Object-Oriented Software Construction that a 

program is not a model of the world but a model 

of some part of the world; "Reality is a cousin 

twice removed". At the same time, some 

principal limitations of OOP had been noted. For 

example, the circle-ellipse problem is difficult to 

handle using OOP's concept of inheritance. 

However, Niklaus Wirth (who popularized the 

adage now known as Wirth's law: "Software is 

getting slower more rapidly than hardware 

becomes faster") said of OOP in his paper, 

"Good Ideas through the Looking Glass", "This 

paradigm closely reflects the structure of 

systems 'in the real world', and it is therefore 

well suited to model complex systems with 

complex behaviours". 

Steve Yegge and others noted that natural 

languages lack the OOP approach of strictly 

prioritizing things (objects/nouns) before actions 

(methods/verbs). This problem may cause OOP 

to suffer more convoluted solutions than 

procedural programming. 

[IV] Object Oriented Unit Testing 

• smallest testable unit is the encapsulated 

class or object 

• similar to system testing of conventional 

software 

• do not test operations in isolation from 

one another 

• driven by class operations and state 

behavior, not algorithmic detail or data 

flow across module interface  

 OO Integration Testing 

• focuses on groups of classes that 

collaborate or communicate in some 

manner 

• integration of operations one at a time 

into classes is often meaningless 

• regression testing is important as each 

thread, cluster, or subsystem is added to 

the system  

• thread-based testing 

• testing all classes required to 

respond to one system input or 

event 

• use-based testing 

• test independent classes first 

• test dependent classes making 

use of them next 

• cluster testing 

• groups of collaborating classes 

are tested for interaction errors 

Object Oriented Validation Testing 

• focuses on visible user actions and user 

recognizable outputs from the system 

• validation tests are based on OOA 

– use-case scenarios 

– object-behavior model 

– event flow diagram 

• conventional black-box testing methods 

can be used to drive the validation tests  

OO Test Case Design 

http://www.jrps.in/
mailto:info@jrps.in


    © INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR                                                                               

      ISSN: 2278-6848   |   VOLUME:  06   ISSUE: 03   |   JULY-SEPTEMBER 2015 

                                                                                                      

______________________________________ 
Paper is available at  www.jrps.in   |    Email : info@jrps.in 

Page | 3  

• Each test case should be uniquely 

identified and be explicitly associated 

with a class to be tested 

• State the purpose of each test 

• List the testing details for each test  

OO Test Case Detail 

• states to examine for each object 

involved 

• messages and operations to exercised as 

a consequence of the test 

• exceptions that may occur when the 

object is tested 

• external conditions needed to be 

changed for the test 

• supplementary information required to 

understand or implement the test  

OO Test Design Issues 

• White-box testing methods can be 

applied to testing the code used to 

implement class operations, but not 

much else 

• Black-box testing  methods are 

appropriate for testing OO systems  

OOP Testing Concerns 

• classes may contain operations that are 

inherited from super classes 

• subclasses may contain operations that 

were redefined rather than inherited 

• all classes derived from an previously 

tested base class need to be thoroughly 

tested  

Interclass Test Case Design 

Multiple Class Testing 

• for each client class use the list of class 

operators to generate random test 

sequences that send messages to other 

server classes 

• for each message generated determine 

the collaborator class and the 

corresponding server object operator 

• for each server class operator (invoked 

by a client object message) determine 

the message it transmits 

• for each message, determine the next 

level of operators that are invoked and 

incorporate them into the test sequence   

Interclass Test Case Design 

Behavior Model Testing 

• test cases must cover all states in the 

state transition diagram  

• breadth first traversal of the state model 

can be used (test one transition at a time 

and only make use of previously tested 

transitions when testing a new 

transition) 

• test cases can also be derived to ensure 

that all behaviors for the class have been 

adequately exercised  

[V] Function based testing 

Code of Prime.m 

function primalitytest = prime(n) 

m = 2; % initialise factor to test 

flag=0; 

for m = 2:floor(sqrt(n)) 

    if mod(n,m) == 0 %m is a factor of n 

        flag=1; 

    end 

end; 

if(flag==1) 

primalitytest='No'; 

else 

primalitytest='Yes';     

  

end 

 

http://www.jrps.in/
mailto:info@jrps.in


    © INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR                                                                               

      ISSN: 2278-6848   |   VOLUME:  06   ISSUE: 03   |   JULY-SEPTEMBER 2015 

                                                                                                      

______________________________________ 
Paper is available at  www.jrps.in   |    Email : info@jrps.in 

Page | 4  

 

 

[VI] Class based Testing 

Testing  of BasicClass.m 

classdef BasicClass 

   properties 

      Value 

   end 

   methods 

      function r = roundOff(obj) 

         r = round([obj.Value],2); 

      end 

      function r = multiplyBy(obj,n) 

         r = [obj.Value] * n; 

      end 

   end 

end 

 

Accessing method from class using object 

Step1: create object of class. 

Step2: assign value to instance variable of class 

using object. 

Step3: access method from class and pass object 

as an argument. 

 

Using assertion on object of class 

 

[VII] Conclusion 

With the introduction of executable modeling 

tools this upfront testing is more feasible. It is 

the work of the tool vendors to make this testing 

technology available and practical to the user.  

References 

1.Object Oriented software testing by Devid C. Kung 

http://www.ecs.csun.edu/~rlingard/COMP595VAV/

OOSWTesting.pdf 

2. Automated Testing tools 

http://www.guru99.com/automation-testing.html 

http://www.jrps.in/
mailto:info@jrps.in


    © INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR                                                                               

      ISSN: 2278-6848   |   VOLUME:  06   ISSUE: 03   |   JULY-SEPTEMBER 2015 

                                                                                                      

______________________________________ 
Paper is available at  www.jrps.in   |    Email : info@jrps.in 

Page | 5  

3. Matlab Documentation 

http://in.mathworks.com/help/matlab/matlab_oop/get

ting-familiar-with-classes.html 

4.ML-Unit Matlab unit Test Framework 

http://sourceforge.net/p/mlunit/mlunit/HEAD/tree/tru

nk/ 

5. Object Oriented programming in Matlab 

http://www.ce.berkeley.edu/~sanjay/e7/oop.pdf 

6. Artem, M., Abrahamsson, P., & Ihme, T. (2009). 

Long-Term Effects of Test-Driven 

Development A case study. In: Agile Processes in 

Software Engineering and Extreme Programming, 

10th International Conference, XP 2009,. 31, pp. 13-

22. Pula, Sardinia, Italy: Springer. 

7. Bach, J. (2000, November). Session based test 

management. Software testing and quality 

engineering magzine(11/2000), 

(http://www.satisfice.com/articles/sbtm.pdf). 

8. Bach, J. (2003). Exploratory Testing Explained, 

The Test Practitioner 2002, 

(http://www.satisfice.com/articles/et-article.pdf). 

9. Bach, J. (2006). How to manage and measure 

exploratory testing. Quardev Inc., 

(http://www.quardev.com/content/whitepapers/how_

measure_exploratory_testing.pdf). 

10. Basilli, V., & Selby, R. (1987). Comparing the 

effectiveness of software testing strategies. 

IEEE Trans. Software Eng., 13(12), 1278-1296. 

11. Berg, B. L. (2009). Qualitative Research Methods 

for the Social Sciences (7th International Edition) 

(7th ed.). Boston: Pearson Education. 

12. Bernat, G., Gaundel, M. C., & Merre, B. (2007). 

Software testing based on formal specifications: a 

theory and tool. In:Testing Techniques in Software 

Engineering, Second Pernambuco Summer School on 

Software Engineering. 6153, pp. 215-242. 

Recife:Springer.  

 

http://www.jrps.in/
mailto:info@jrps.in

