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Abstract 

In this paper, we investigate the curvature properties of Lorentzian generalized 

Sasakian-space-forms. We establish the necessary and sufficient conditions for these 

manifolds to be projectively flat, conformally flat, conharmonically flat, and Ricci 

semisymmetric, exploring their interrelationships. Additionally, as an application of 

these theorems, we study the behavior of Ricci almost solitons on conformally flat 

Lorentzian generalized Sasakian-space-forms. 
Key words:  Lorentzian, Sasakian-Space-Forms, Curvature, semisymmetric, Ricci, Differential 

Geometry 

1. Introduction 

Gauge theory, as we all know, has a lot of profound intension and it has permeated 

all aspects of theoretical physics. It will surely guide future developments in 

theoretical physics. Gauge theory and principal fiber bundle theory are inextricably 

linked with each other (see [1]). For instance, the field strength   of gauge theory 

is exactly the curvature of a manifold (see [2]). So if we know the curvature 

properties of a manifold, we can get the distribution of field strength   . The 

purpose of our paper is to clarify the unsteady field around Lorentzian generalized 

Sasakian-space-forms in view of principal fiber bundle theory. 

In differential geometry, the curvature tensor R is very significant to the nature of a 

manifold. Many other curvature tensor fields defining on the manifold are related 

with curvature tensor, for instance, Ricci tensor S, scalar curvature r, and 

conharmonic curvature tensor K. It has been proven that the curvature depends on 

sectional curvatures entirely. If a manifold is of constant sectional curvature, then 

we call it a space-form. 

For a Sasakian manifold, we have the definition of ϕ-sectional curvature and it plays 

the same role as a sectional curvature. If the ϕ-sectional curvature of a Sasakian 
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manifold is constant, then the manifold is a Sasakian-space-form (see [3]). As a 

generalization of Sasakian-space-form,generalized Sasakian-space-form was 

introduced and investigated in [4] and the authors also gave some examples. In short, 

a generalized Sasakian-space-form is an almost contact metric manifold that the 

curvature tensor R is related with three smooth functions f1, f2, and f3 defined on the 

manifold. 

In [5], the authors defined the generalized indefinite Sasakian-space-form. It is the 

generalized Sasakian-space-form with a semi-Riemannian metric. In this paper, we 

are most interested in the Lorentzian manifold because it is very useful in Einstein’s 

general relativity. In Lorentzian generalized Sasakian-space-form, and to make our 

paper more concise, we will write it as LGSSF for short. We give the necessary and 

sufficient condition of the LGSSF with the dimension equal to or greater than five 

to be some certain curvature tensor conditions. This article also clarify the necessary 

and sufficient condition that LGSSF is Ricci semisymmetric. It is meaningful to dig 

into LGSSF satisfying these conditions because we can understand the relationship 

between the functions f1, f2, and f3 and the curvature properties of the manifold. 

Ricci flow is a powerful tool to investigate manifolds. It was first introduced by 

Hamilton in [6], and he used it to investigate Riemannian manifolds with positive 

curvature. There are many solutions to Ricci flow, and the Ricci soliton is the self-

similar solution of it. Physicists are also interested in the Ricci soliton because in 

physics, it is regarded as a quasi-Einstein metric. In our paper, we give the Ricci 

soliton equation as follows: 

                 Lwg +2S=2λg      (1) 

In the equation, LW denotes the Lie derivative, S denotes the Ricci tensor, g denotes 

the Riemannian metric, and λ is a real scalar. We call it the triple (g, W, and λ) Ricci 

soliton on the manifold. People can also use the Ricci soliton to study semi-

Riemannian manifolds and refer to [7–9] for more details. 

In [10], Pigola et al. introduced and studied the Ricci almost soliton. They replaced 

the real scalar λ by a smooth function defining the manifold and called it the triple 

(g, W, and λ) Ricci almost soliton. In our paper, we apply the Ricci almost soliton to 

LGSSF, and in consideration of the curvature properties of the manifolds, we get 

some interesting results. 

We organize our paper as follows. In Section 2, readers can get several basic 

definitions about LGSSF. Sections 3, 4, 5, and 6 are dedicated to showing how a 

LGSSF can be projectively flat, conformally flat, conharmonically flat, and Ricci 

semisymmetric. In Section 7, we apply what we get from Sections 3, 4, 5, and 6 to a 

Ricci almost soliton on LGSSF and give two examples. 
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We use U, W, V, X, Y, and Z to denote the smooth tangent vector fields on the 

manifold, and all manifolds and functions mentioned in paper are smooth. 

2. Preliminaries 

If a semi-Riemannian manifold M admits a vector field ζ (we call it a Reeb vector 

field or characteristic vector field), a 1-form η, and a (1,1) tensor field ϕ satisfying 
(2) 

where ε = g(ζ, ζ) = ±1, then call such a manifold an ε-almost contact metric manifold 

[11] or almost contact pseudometric manifold [12], and  call it the triple (ϕ, ζ, and η) 

almost contact structure on the manifold. 

If the 2-form dη and the metric g satisfy. 

      (3) 

 

Then the manifold M is a contact pseudometric manifold and the triple (ϕ, ζ, and η) 

is a contact structure on the manifold. 

To define a vector field on the product ℝ × M2n+1 by (h (d/dx), U); x is the 

coordinate on ℝ and h is a C∞ function on ℝ × M2n+1. Then define an almost 

complex structure J on ℝ × M2n+1 by 

               (4) 

 

and it is easy to check J2 = −id. Moreover, if J is integrable, then will 

say the almost contact structure (ϕ, ζ, and η) is normal (see [3]). Call 

an ε-normal contact metric manifold an indefinite Sasakian 

manifold or an ε-Sasakian manifold. 

Now  give the definition of the ϕ-sectional curvature. The 

plane spanned by U and ϕU is called ϕ-section if U is 

orthogonal to ζ. The ϕ-sectional curvature is the 

sectional curvature K(U, ϕU). The curvature 

of an indefinite Sasakian manifold is determined by ϕ-sectional curvatures entirely. 

If the ϕ-sectional curvature of an ε-Sasakian manifold is a constant c, then the 

curvature tensor of the manifold has the following form [13]: 

 

 

 

(5) 

 

In [5], the 

author 
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replaced the constants with three smooth functions defining the manifold. For an ε-

almost contact metric manifold M, if the curvature tensor is given by 

(6) 

where f1, f2, f3 ∈ C∞(M), then  call M the generalized indefinite Sasakian-space-

form. 

In this paper, the only focus is on the Lorentzian situation: ε = −1 and the index of 

the metric is one. And called such manifold the Lorentzian generalized Sasakian-

space-form, and in our paper, we denote it by . Because some of the 

curvature tensor fields studied are not suitable for three manifolds, in the 

following, the dimension of LGSSF  is greater than three, that 

is, n >1 

For a LGSSF   , we have two useful equations from (6):
 

   
 (7)

    
 (8) 

Lemma 1. For a LGSSF , the Ricci tensor S is       

           (9)  

so the Ricci operator Q and scalar curvature r are 

                                              (10)

                                                                                        (11) 

Proof. As we all know for a semi-Riemannian manifold of dimension n, the Ricci 

tensor S and the scalar curvature r are 

 
 

 

 

                                                                                  

(12)                     

where {Ei, ⋯, En} is a local orthonormal frame field on the manifold and εi is the 

signature of Ei. The curvature tensor of    is given  by                                                                                           

g(U, W) = ∑εig(U, Ei)g(X, Ei), so it is can easily get (9), (10), and (11). 

We can use warped product to construct LGSSF (see [5]). Let h > 0 be a function 

on ℝ and (N2n, J, and G) be an almost complex manifold. Then, the warped 

product M = ℝ×hN is a LGSSF with the Lorentzian metric given by 
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                  (13) 

 
where π is the projection from ℝ × N to ℝ and σ is the projection to N. The almost contact 

structure is 

      (14) 

 
Theorem 2 ( [5].)  Given a generalized complex space-form N 2n (F1, F2). Then,  is LGSSF, with 

functions 

      (15) 

 

 

3. Projectively Flat Lorentzian Generalized Sasakian-Space-Form 
For a (2n + 1)-dimensional (n > 1) smooth manifold M, the projective curvature tensor P is 

defined by. 

 

                                    (16) 

 

It is a way to measure whether a manifold is a space-form because if M is projectively flat (P = 

0), then it must be of constant curvature and the converse is also true. For more details, readers 

can refer to [14]. 

Theorem 3. A LGSSF  is projectively flat if and only if f2 = f3 = 0. 

Proof. Firstly, suppose that P(U, W)X = 0. Put U = ζ and replace X by ϕX, then equation (16) will 

be 

     (17) 

n consideration of g(W, ϕX) ≠ 0, we have 

       (18) 

Then, equation (9) will be 

         (19)  

By the above equation,  can be  written as (16)  
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  (20) 

 

Setting U = ϕU and W = ϕW,  we have 

(21) 
Let us denote the orthonormal local basis of TM by {e1, ⋯, e2n, e2n+1 = ζ}. Obviously, the 

signature of the local basis is {+, ⋯, +, −} and denote it by {ε1, ⋯, ε2n, ε2n+1}. 

Putting W = ei and Z = εiei in the above equation and summing over i,  the following equation: 

 

                                              (22) 

 

since , .  

 

Because of g(ϕU, ϕX) ≠ 0, we get 

 

       (23) 

Taking consideration of (2n − 1)f3 − 3f2 = 0 and n > 1, we get 

        (24) 

Conversely, we suppose that f2 = f3 = 0 then use (6) and (9), then (16) will be 

(25) 
In order to get the next theorem of our paper, we first introduce the following famous theorem. 

Schur.Theorem (see [15]). If Mn(n ≥ 3) is a connected semi-Riemannian manifold, and for 

each m ∈ M, the sectional curvature K(m) is a constant function on the nondegenerate planes 

in TmM, then K(m) is a constant function on the manifold. 

From Theorem 3, we can get if a LGSSF  is projectively flat, then K(m) = f1. 

Using Schur.Theorem, we have the following theorem. 

Theorem 4. If a LGSSF  is projectively flat, then f1 is a constant 

function. 

4. Conharmonically Flat Lorentzian Generalized Sasakian-Space-Form 

The conharmonic transformation is a kind of special conformal transformation. In 

general, a conformal transformation does not preserve the harmonic function defined 

on the manifold. In [16], Ishii introduced and studied the conharmonic 

transformation, which preserved a special kind of harmonic function. He also proved 

that a manifold could be reduced to a flat space by a conharmonic transformation if 
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and only if the conharmonic curvature tensor K vanished everywhere on the 

manifold. In other words, the manifold is conharmonically flat (K = 0). For a (2n + 

1)-dimensional (n > 1) smooth manifold, the conharmonic curvature tensor K is 

given by. 

   (26) 

Definition 7. A (2n + 1)-dimensional (n > 1) LGSSF is said to be ζ-conharmonically flat if it 

satisfies 

                                                                           (27) 

Lemma 8. A LGSSF  is ζ-conharmonically flat if and only if (2n + 1)f1 + 

3f2 + 2f3 = 0. 

Proof. From (7) and (10), equation (27) becomes, 

   (28) 

So  is ζ-conharmonically flat if and only if (2n + 1)f1 + 3f2 + 2f3 = 0.  

From equation (11) and Lemma 8, we have the following theorem. 

Theorem 9. A LGSSF  is ζ-conharmonically flat if and only if its scalar 

curvature r = 0. 

By Theorem 3 and Lemma 8, we have the following theorem. 

Theorem 10. If a LGSSF  is ζ-conharmonically flat and projectively 
flat, then it is a flat manifold. 

We know that being conharmonically flat is the sufficient condition of ζ-

conharmonically flat. So we have the following theorem. 

Theorem 11. If a LGSSF  is conharmonically flat and projectively 

flat, then it is a flat manifold. 

It is very important for us to know how a LGSSF can be conharmonically flat. 

Theorem 12. A LGSSF  is conharmonically flat if and only if f2 = 0 

and (2n + 1)f1 + 2f3 = 0. 

Proof. Comparing (26) with we can get 

                     (29) 

If f2 = 0 and (2n + 1)f1 + 2f3 = 0, then from Theorem 4 .  

       (30) 
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5. Ricci Semisymmetric Lorentzian Generalized Sasakian-Space-Form: 

There are many classes of smooth manifolds such as locally symmetric and Ricci 

symmetric. A smooth manifold is Ricci semisymmetric when the curvature 

operator R(U, W) acting on S vanishes identically, that is 
 

                                                                                             (31) 

Theorem 14. A (2n + 1)-dimensional (n > 1) LGSSF   is Ricci semisymmetric if 

and only if f1 + f3 = 0 or 3f2 = (2n − 1)f3. 

Proof. First, suppose that  is Ricci semisymmetric, that is 

                          (32)  
Put U = ζ in the above equation, then we will have 

 

                     ( 33) 
 

 

Then, using (8), we can get 

    (34) 
Again we use the orthonormal basis {e1, ⋯, e2n+1 = ζ} with signature {ε1, ⋯, ε2n, ε2n+1 = ε}, and this 

time, in the above equation, we suppose W = ei and Z = εiei(1 ≤ i ≤ 2n + 1), and taking summation 

over i, we can get 

      (35) 

Hence, we get f1 + f3 = 0 or (2n − 1)f3 − 3f2 = 0. 

Conversely, if (2n − 1)f3 − 3f2 = 0, then by direct calculation, 

      (36) 

Theorem 15. If a LGSSF  is conharmonically flat and Ricci 

semisymmetric, then it is a flat manifold. 

Proof. From Theorem 12 and Theorem 14, we know that if a LGSSF is conharmonically flat and 

Ricci semisymmetric, then we will have f2 = 0, (2n + 1)f1 + 2f3 = 0, and 3f2 = (2n − 1)f3 or f1 + f3 = 

0. In any case, we get f1 = f2 = f3 = 0. 

Notice that f2 = f3 = 0 satisfies (2n − 1)f3 − 3f2 = 0, so we can get the following theorem. 

Theorem 16. If a LGSSF  is projectively flat, then it is Ricci 

semisymmetric. 

6. Practical application of Curvature Properties on Lorentzian: 

Curvature properties on Lorentzian Generalized Sasakian-Space-Forms find 

practical applications primarily in the field of theoretical physics, particularly in 

areas like gravity theory, gauge theory, and cosmology due to their ability to model 

complex spacetime geometries with specific curvature characteristics, allowing 
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researchers to study phenomena like black holes, wormholes, and the early universe 

under specific conditions. 

  6.1. Some key applications include: 

1. Modeling exotic spacetimes: Lorentzian Generalized Sasakian-Space-Forms 

provide a framework to study non-standard spacetime geometries with 

varying curvature properties, which can be useful for theoretical 

investigations into alternative gravity theories or extreme astrophysical 

scenarios. 

2. Studying gravitational lensing: Analyzing the curvature properties of these 

spaceforms, researchers can investigate how light bends around massive 

objects like black holes, providing insights into gravitational lensing 

phenomena. 

3. Exploring particle physics in curved space time: The specific curvature 

characteristics of these spaces can be used to study how particles behave in 

curved spacetime, potentially providing insights into quantum gravity 

theories. 

4. Investigating cosmological models: By incorporating the curvature 

properties of Lorentzian Generalized Sasakian-Space-Forms into 

cosmological models, researchers can study the evolution of the universe 

under different conditions.  

 

8. Conclusion  

From the above properties it presents the necessary and sufficient conditions for 

LGSSF to be projectively flat, conformally flat, conharmonically flat, and Ricci 

semisymmetric. As a result, the study shows how to construct a Lorentzian manifold 

with certain curvature tensor conditions, which is useful in gauge theories because 

of the correspondence between curvature and field strength. It also play a vital role 

in studying gravitational lensing and Investigating cosmological models and much 

more. 
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