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Abstract
In this paper, we investigate the curvature properties of Lorentzian generalized
Sasakian-space-forms. We establish the necessary and sufficient conditions for these
manifolds to be projectively flat, conformally flat, conharmonically flat, and Ricci
semisymmetric, exploring their interrelationships. Additionally, as an application of
these theorems, we study the behavior of Ricci almost solitons on conformally flat
Lorentzian generalized Sasakian-space-forms.
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1. Introduction
Gauge theory, as we all know, has a lot of profound intension and it has permeated
all aspects of theoretical physics. It will surely guide future developments in
theoretical physics. Gauge theory and principal fiber bundle theory are inextricably

linked with each other (see [1]). For instance, the field strength fiv of gauge theory
Is exactly the curvature of a manifold (see [2]). So if we know the curvature

properties of a manifold, we can get the distribution of field strength fiv . The
purpose of our paper is to clarify the unsteady field around Lorentzian generalized
Sasakian-space-forms in view of principal fiber bundle theory.

In differential geometry, the curvature tensor R is very significant to the nature of a
manifold. Many other curvature tensor fields defining on the manifold are related
with curvature tensor, for instance, Ricci tensor S, scalar curvaturer, and
conharmonic curvature tensor K. It has been proven that the curvature depends on
sectional curvatures entirely. If a manifold is of constant sectional curvature, then
we call it a space-form.

For a Sasakian manifold, we have the definition of ¢-sectional curvature and it plays
the same role as a sectional curvature. If the ¢-sectional curvature of a Sasakian
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manifold is constant, then the manifold is a Sasakian-space-form (see [3]). As a
generalization of Sasakian-space-form,generalized Sasakian-space-form was
introduced and investigated in [4] and the authors also gave some examples. In short,
a generalized Sasakian-space-form is an almost contact metric manifold that the
curvature tensor R is related with three smooth functions fi, f., and fz defined on the
manifold.
In [5], the authors defined the generalized indefinite Sasakian-space-form. It is the
generalized Sasakian-space-form with a semi-Riemannian metric. In this paper, we
are most interested in the Lorentzian manifold because it is very useful in Einstein’s
general relativity. In Lorentzian generalized Sasakian-space-form, and to make our
paper more concise, we will write it as LGSSF for short. We give the necessary and
sufficient condition of the LGSSF with the dimension equal to or greater than five
to be some certain curvature tensor conditions. This article also clarify the necessary
and sufficient condition that LGSSF is Ricci semisymmetric. It is meaningful to dig
into LGSSF satisfying these conditions because we can understand the relationship
between the functions fy, f, and fz and the curvature properties of the manifold.
Ricci flow is a powerful tool to investigate manifolds. It was first introduced by
Hamilton in [6], and he used it to investigate Riemannian manifolds with positive
curvature. There are many solutions to Ricci flow, and the Ricci soliton is the self-
similar solution of it. Physicists are also interested in the Ricci soliton because in
physics, it is regarded as a quasi-Einstein metric. In our paper, we give the Ricci
soliton equation as follows:

Lwg +2S=2Ag (1)
In the equation, Lw denotes the Lie derivative, S denotes the Ricci tensor, g denotes
the Riemannian metric, and 4 is a real scalar. We call it the triple (g, W, and 1) Ricci
soliton on the manifold. People can also use the Ricci soliton to study semi-
Riemannian manifolds and refer to [7—9] for more details.
In [10], Pigola et al. introduced and studied the Ricci almost soliton. They replaced
the real scalar 1 by a smooth function defining the manifold and called it the triple
(g, W, and 1) Ricci almost soliton. In our paper, we apply the Ricci almost soliton to
LGSSF, and in consideration of the curvature properties of the manifolds, we get
some interesting results.
We organize our paper as follows. In Section 2, readers can get several basic
definitions about LGSSF. Sections 3, 4, 5, and 6 are dedicated to showing how a
LGSSF can be projectively flat, conformally flat, conharmonically flat, and Ricci
semisymmetric. In Section 7, we apply what we get from Sections 3, 4, 5,and 6 to a
Ricci almost soliton on LGSSF and give two examples.
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We use U, W, V, X, Y, and Z to denote the smooth tangent vector fields on the
manifold, and all manifolds and functions mentioned in paper are smooth.
2. Preliminaries
If a semi-Riemannian manifold M admits a vector field { (we call it a Reeb vector
field or characteristic vector field), a 1-form », and a (1,1) tensor field ¢ satisfying
(2)

where ¢ = (¢, {) = £1, then call such a manifold an e-almost contact metric manifold
[11] or almost contact pseudometric manifold [12], and call it the triple (¢, £, and #)
almost contact structure on the manifold.
If the 2-form dx and the metric g satisfy.

dn (U,W) = g (U,¢W), (3)

Then the manifold M is a contact pseudometric manifold and the triple (¢, £, and #)
IS a contact structure on the manifold.

To define a vector field on the product R x M?™* by (h (d/dx), U); x is the
coordinate on R and h is a C* function on R x M?"*1, Then define an almost
complex structure J on R x M2" by

4y L
}(JIE.D) (J;{mdx,@ hﬁ), @

and ¢ =0, itiseasy tocheck J*=—id. Moreover, if J is integrable, then will

say e =0, the almost contact structure (¢, , and #) is normal (see [3]). Call
_ an e-normal contact metric manifold an indefinite Sasakian
¢* = —id +n®{, manifold or an e-Sasakian manifold.
0 =1, Now give the definition of the ¢-sectional curvature. The
plane spanned by U and ¢U is called ¢-section if U is
) =eg C,U), orthogonal to {. The ¢-sectional curvature is the

g (U,W) = g (U, W) + en (U) n(W), sectional curvature K(U, ¢U). The curvature
of an indefinite Sasakian manifold is determined by ¢-sectional curvatures entirely.
If the ¢-sectional curvature of an e-Sasakian manifold is a constant c, then the
curvature tensor of the manifold has the following form [13]:

RUWX =2 g 0U - (U )W)
+ g (U.gX) ¢ - g (W,9X) gU + 29 (U, ¢W) 6X) (5)

F S U)W =g (W) (X)U +eg U X)W - eg W.X)n(U)S}. In [5], the
author
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replaced the constants with three smooth functions defining the manifold. For an ¢-
almost contact metric manifold M, if the curvature tensor is given by
RUW)X = fi{gW. X)U - g (U, X)W} + fo{g (U, ¢X) ¢W — g (W, ¢X) ¢U + 29 (U, ¢W) ¢ X}

LA U OW =g (W)n(X)U + &g (U, X) g (W) { = eg (W, X) n (U) F, (6)
where f, 2, f € C*(M), then call M the generalized indefinite Sasakian-space-
form.
In this paper, the only focus is on the Lorentzian situation: ¢ = —1 and the index of
the metric is one. And called such manifold the Lorentzian generalized Sasakian-
space-form, and in our paper, we denote it by M:""' (fi. £ f), Because some of the
curvature tensor fields studied are not suitable for three manifolds, in the
following, the dimension of LGSSF M:"" (fi- 2 f3) iis greater than three, that
is, n>1

In+l

Foralgssk My (fi. fu f-%}, we have two useful equations from (6):

RUWY=(fi+ fi)(n(UYW —y(W)U),
REUYW = (fi+ f3) (gU.W){+n(W)U).

(7)

(8)
Lemma 1. For a LGSSF ¥ lm_] (fis fos f?:}, the Ricci tensor S is
S(UW)=(2af, +3f,+ f5) g(U W) +(3f, - 2n-1) f5) n(U)n(W), (9)

so the Ricci operator Q and scalar curvature r are
QU = (2nf, +3f,+ ;) U +((2n=1) f5-3f,)n (U<, (10)
r=2n(2n+1) f, + 6nf, + dnf .. (11)

Proof. As we all know for a semi-Riemannian manifold of dimension n, the Ricci
tensor S and the scalar curvature r are

S(U.W) = D gg(R(U.E)E.W),
i=1

r =Y &S(E,E,),
(12) =i
where {E;, ---, En} is a local orthonormal frame field on the manifold and & is the
signature of Ei.  The curvature tensor of Mi""'(fi./»f) is given by
g(U, W) =>eig(U, Eig(X, Ei), so it is can easily get (9), (10), and (11).

We can use warped product to construct LGSSF (see [5]). Let h > 0 be a function
onRand (N>, J, and G) be an almost complex manifold. Then, the warped
product M = RxnN is a LGSSF with the Lorentzian metric given by
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gn =" (gg) + (h=m) " (G), (13)

where 7 is the projection from R x N to R and ¢ is the projection to N. The almost contact
structure is

d
';: = as
) {U} = _gir {Lrﬁ (J 1
$(U) = (Jo.U)". (14)

Theorem 2 ([5].) Given a generalized complex space-form N 2 (F., F2). Then, is LGSSF, with
functions

f_{F|<=-:'r}+h’z
b h* '
Foom
fo= h
E om)+h™ R
o (Femen®

h* h (15)

3. Projectively Flat Lorentzian Generalized Sasakian-Space-Form

For a (2n + 1)-dimensional (n > 1) smooth manifold M, the projective curvature tensor P is
defined by.

1 T T AT
PUW)X = - {SUX)W - S(W, X)U} + R(U,W) X. )

It is a way to measure whether a manifold is a space-form because if M is projectively flat (P =
0), then it must be of constant curvature and the converse is also true. For more details, readers
can refer to [14].

Theorem 3. A LGSSF Mi"™ (fus fa» £)(1 > 1) s projectively flat if and only if f, = f. = 0.
Proof. Firstly, suppose that P(U, W)X = 0. Put U = {and replace X by ¢.X, then equation (16) will
be

N _ _
PEW)¢X = —(2n-1) f;-3f) g(W¢X) (= 0. (7)
n consideration of g(W, ¢X) # 0, we have
2n-1) f;-3f;=0. (18)

Then, equation (9) will be
SW.U)=(2nf, +3f,+ i) g(WU) =2n(fi + f3) g(W.U).  (19)
By the above equation, can be written as (16)
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gP(UW) X, Z) = f,{g(U.¢X) g (¢W. Z) - g (W, ¢X) g (U, Z) + 29 (U, $W) g (¢ X, Z)}
- Hin W) (X) g (U, Z) = q (U)n(X) g(W, Z) + (W) 5 (Z) g (U, X) = (U) n(Z) g (W, X)
+g(W,X)g(U,2) - g (U, X) g (W, 2)} = 0. 20)

Setting U = ¢U and W = ¢W, we have
g(P (U, ¢W) X, Z)

f{9(8U. ¢X) g ($°W, Z) + 29 ($U, $°W) g (¢X. Z) - g (¢W, ¢X) g (U, Z)}
+ f:19 (U, X) g (¢W, Z) - g (¢W, X) g (¢U, Z)} = 0. (21)

Let us denote the orthonormal local basis of TM by {es, -, €2, €21 = }. Obviously, the
signature of the local basis is {+, -+, +, —} and denote it by {e1, :*-, &2n, &2n01}.
Putting W = e and Z = g in the above equation and summing over i, the following equation:

(fi=(@2n+1) f,) g (U, ¢X) =0, (22)

since , 9(@U. ¢X) = X7 &.g(¢U. ;) g(¢X, )

Because of g(¢U, ¢X) # 0, we get

fi—-(2n+1)f, =0. (23)
Taking consideration of 2n - 1), - 3f,=0and n> 1, we get
fLr=f=0 (24)

Conversely, we suppose that f, = f; = 0 then use (6) and (9), then (16) will be
PUW)X = fi{gU X)W - g(W,X)U} - fi {g (U, X)W - g(W,X)U} = 0.(25)

In order to get the next theorem of our paper, we first introduce the following famous theorem.
Schur.Theorem (see [15]). If M"(n> 3) is a connected semi-Riemannian manifold, and for
each m € M, the sectional curvature K(m) is a constant function on the nondegenerate planes
in T»M, then K(m) is a constant function on the manifold.

In+l
From Theorem 3, we can get if a LGSSF M (s o i) s projectively flat, then K(m) = fu.
Using Schur.Theorem, we have the following theorem

Theorem 4. If a LGSSF M1 (fus far f3)( > 1) i projectively flat, then f. is a constant
function.

4. Conharmonically Flat Lorentzian Generalized Sasakian-Space-Form

The conharmonic transformation is a kind of special conformal transformation. In
general, a conformal transformation does not preserve the harmonic function defined
on the manifold. In [16], Ishii introduced and studied the conharmonic
transformation, which preserved a special kind of harmonic function. He also proved
that a manifold could be reduced to a flat space by a conharmonic transformation if
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and only if the conharmonic curvature tensor K vanished everywhere on the
manifold. In other words, the manifold is conharmonically flat (K = 0). For a (2n +
1)-dimensional (n> 1) smooth manifold, the conharmonic curvature tensor K is
given by.

K({UW)X = {g (U, X)QW - g(W,X)QU +S(U, X)W - S(W,X)U} + R(U, W) X.

2n—1 (26)
Definition 7. A (2n + 1)-dimensional (n > 1) LGSSF is said to be {-conharmonically flat if it
satisfies

K({UW)(=0. (27)

In+]
Lemma 8. A LGSSF M1 (fis fo. 3)(n > 1) s conharmonically flat if and only if (2n + 1)f, +
3f2 + 2f3 =0.
Proof. From (7) and (10), equation (27) becomes,

K({UW)({ = — {2n(fy + f)pWYU =2n(f, + f3) n (U)W + (2nf, +3f, + fi) (W)U
- nf, +3f+ )OI (fy+ £ Q)W =g (W)U} = = (@n=1) 43,
+2f;) (W)U - (U)W} (28)

so Mi"" (fi» 2 f) is ¢conharmonically flat if and only if (2n + 1)f, + 3f, + 2f. = 0.

From equation (11) and Lemma 8, we have the following theorem.

Theorem 9. A LGSSF ;wf“‘][_ﬂ,fl, > 1) {-conharmonically flat if and only if its scalar
curvature r=0.

By Theorem 3 and Lemma 8, we have the following theorem.

Theorem 10. If a LGSSF M1"" (f1» fa: £)(n > 1) i conharmonically flat and projectively
flat, then it is a flat manifold.

We know that being conharmonically flat is the sufficient condition of {-
conharmonically flat. So we have the following theorem.

Theorem 11. If a LGSSF Mi"" (fi: f» f)(n > 1) is conharmonically flat and projectively
flat, then it is a flat manifold.

It is very important for us to know how a LGSSF can be conharmonically flat.

Theorem 12. A LGSSF Mi"" (fi: fo f3)(n > 1) i conharmonically flat if and only if , =0
and (2n + 1)f; + 2f; = 0.
Proof. Comparing (26) with we can get
(2n-1) fy +3f, +2f,
CUW)X = ; : WX)U-g(U X)W+ K({U W)X
(U, W) - fgW.X)U-g (U, X)W} + KU W) (29)
If ,=0and (2n + 1)f; + 2f; = 0, then from Theorem 4.

K({UW)X=CUW)X - (2n 4 ”j’l +‘:f3 +2/s {gﬁﬂX:lU—g(U,X}W} = 0. (30)
H—
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5. Ricci Semisymmetric Lorentzian Generalized Sasakian-Space-Form:
There are many classes of smooth manifolds such as locally symmetric and Ricci
symmetric. A smooth manifold is Ricci semisymmetric when the curvature
operator R(U, W) acting on S vanishes identically, that is

R(UW)-5=0. (31)

Theorem 14. A (2n + 1)-dimensional (n > 1) LGSSF Mf“_]{fvfz* f3) is Ricci semisymmetric if
and only if f, + fs = 0 or 3f, = (2n — 1)fs.
1}‘!2“ ]{f f f } A . R . .
Proof. First, suppose that * J1: J2: 30 is Ricci semisymmetric, that is
(R(IUW)-8)(Y.Z)=-S(Y,R(UW)Z)-S(RIUW)Y,Z)=0. (32)

Put U = {'in the above equation, then we will have

S(R({LW)Y,Z) +S(Y,R({,W)Z) =0, (33)

Then, using (8), we can get
(fi+ £) g YIS 2) + (V) S(W, Z) + g(W, 2) S (L, Y) + 5 (Z) S(W, Y)}

= (it ) (@n=1) fi=3f) =) nW)n(2) -n(Z) g W Y) = (V) g(W. 2)} = 0. (34

Again we use the orthonormal basis {es, -++, €z« = } with signature {ei, -+, &, €21 = €}, and this
time, in the above equation, we suppose W erand Z = eei(1 <i<2n+ 1), and taking summation
over i, we can get

2n(fi+ f3)(2n=1) f;-3f)n(Y) = 0. (35)
Hence, we getfi+f;=00r(2n-1);-3f,=0

Conversely, if 2n = 1)f; - 3f2 0, then by direct calculation,
(R(ULLW)-8)(Y,Z2) = -S(Y,R(UW) Z) -S(R(UW)Y,Z)

= - (2nf, +3f, + ) {g RUW)ZY)+gRUW)Y.2)}=0. (36

Theorem 15. If a LGSSE M1"" (fis far )1 > 1) jg conharmonically flat and Ricci
semisymmetric, then it is a flat manifold.

Proof. From Theorem 12 and Theorem 14, we know that if a LGSSF is conharmonically flat and
Ricci semisymmetric, then we WI|| have f =0, (2n + 1)f. + 2f; =0, and 3f. = (2n — D)fsor fi + fs =
0. Inany case, we getfi=f, =f; =

Notice thatf.=f:=0 satlsfles (2n - 1)f3 3= O so we can get the following theorem.

Theorem 16. If a LGSSF Mi1™" (fus far f3)(1 > 1) s projectively flat, then it is Ricci
semisymmetric.

6. Practical application of Curvature Properties on Lorentzian:

Curvature properties on Lorentzian Generalized Sasakian-Space-Forms find
practical applications primarily in the field of theoretical physics, particularly in
areas like gravity theory, gauge theory, and cosmology due to their ability to model
complex spacetime geometries with specific curvature characteristics, allowing

99


http://www.jrps.in/
mailto:info@jrps.in
https://onlinelibrary.wiley.com/doi/10.1155/2019/5136758#disp-0008
https://onlinelibrary.wiley.com/doi/10.1155/2019/5136758#mthst-0016
https://onlinelibrary.wiley.com/doi/10.1155/2019/5136758#mthst-0019

ISSN: 2278-6848 | Volume: 10 Issue: 01 | January - March 2019
JRIS Paper is available at www.jrps.in | Email : info@jrps.in

h © INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

researchers to study phenomena like black holes, wormholes, and the early universe
under specific conditions.
6.1. Some key applications include:

1. Modeling exotic spacetimes: Lorentzian Generalized Sasakian-Space-Forms
provide a framework to study non-standard spacetime geometries with
varying curvature properties, which can be useful for theoretical
investigations into alternative gravity theories or extreme astrophysical
scenarios.

2. Studying gravitational lensing: Analyzing the curvature properties of these
spaceforms, researchers can investigate how light bends around massive
objects like black holes, providing insights into gravitational lensing
phenomena.

3. Exploring particle physics in curved space time: The specific curvature
characteristics of these spaces can be used to study how particles behave in
curved spacetime, potentially providing insights into quantum gravity
theories.

4. Investigating cosmological models: By incorporating the curvature
properties of Lorentzian Generalized Sasakian-Space-Forms into
cosmological models, researchers can study the evolution of the universe
under different conditions.

8. Conclusion

From the above properties it presents the necessary and sufficient conditions for
LGSSF to be projectively flat, conformally flat, conharmonically flat, and Ricci
semisymmetric. As a result, the study shows how to construct a Lorentzian manifold
with certain curvature tensor conditions, which is useful in gauge theories because
of the correspondence between curvature and field strength. It also play a vital role
in studying gravitational lensing and Investigating cosmological models and much
more.
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