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ABSTRACT 

This study investigates the application of Natural Language Processing (NLP) in automating user 

interface (UI) testing for web and mobile applications. The primary research problem addressed is how 

NLP can effectively interpret and execute test cases from natural language descriptions, aiming to 

streamline and enhance the testing process. The study employs a design that includes developing an 

NLP-based framework, generating test cases from natural language inputs, and evaluating the 

framework's performance and accuracy. Key findings reveal that the NLP framework successfully 

converts natural language descriptions into actionable test cases with high accuracy. It also performs 

efficiently in executing these test cases and demonstrates effective error detection and reporting. These 

results support the hypothesis that NLP can significantly improve UI testing by making test case 

creation more intuitive and automation more effective. The study concludes that NLP-driven 

automation offers a valuable advancement in UI testing methodologies, suggesting further exploration 

of advanced NLP techniques and broader application scenarios. 

Keywords: Natural Language Processing, UI Testing Automation, Test Case Generation, Execution 

Performance, Error Detection 

Introduction 

 Automated testing has become an indispensable component of modern software development, 

particularly in the realm of user interface (UI) testing. As software systems grow increasingly complex, 

the need for efficient and reliable testing methods has never been more critical. Traditional UI testing 

approaches often involve extensive manual effort, which can be both time-consuming and error-prone. 

This challenge has driven the exploration of more advanced techniques to streamline the testing process 

and improve overall accuracy. One such technique that has garnered significant attention is the 

application of Natural Language Processing (NLP) in automating UI testing. 

NLP, a field of artificial intelligence focused on the interaction between computers and human 

language, offers the potential to revolutionize UI testing by enabling computers to understand and 

process natural language descriptions of test cases. This capability allows testers to write test scenarios 

in plain language, which the system can then interpret and convert into executable test cases. By 

leveraging NLP, the automation process becomes more intuitive, reducing the barrier for non-technical 

users and accelerating the creation of test scenarios. 

The integration of NLP into UI testing addresses several key challenges. Firstly, it simplifies the test 

case creation process. Traditional methods often require writing test scripts in complex programming 

languages, which can be a significant hurdle for testers who may not have a strong technical 

background. NLP allows these testers to describe test cases in natural language, making it easier for 

them to articulate the desired outcomes and test scenarios without needing deep technical knowledge. 

This shift not only democratizes the testing process but also enhances productivity by speeding up the 

creation of comprehensive test cases. 

Secondly, NLP-based automation can significantly improve the accuracy and consistency of test cases. 

Manual testing is susceptible to human errors, such as inconsistencies in test execution or overlooked 
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scenarios. By automating the generation and execution of test cases, NLP helps standardize the process, 

ensuring that tests are executed in a uniform manner and reducing the likelihood of oversight. This leads 

to more reliable test results and better coverage of different test scenarios. 

Moreover, the application of NLP in UI testing can enhance the overall efficiency of the testing process. 

Automated test execution powered by NLP can rapidly process numerous test cases, providing quicker 

feedback and reducing the time required for testing phases. This efficiency is crucial in agile 

development environments where frequent iterations and rapid deployment are common. The ability to 

quickly generate and execute test cases allows development teams to identify and address issues more 

rapidly, ultimately contributing to faster release cycles and improved software quality. 

 

Figure 1: General Architecture of 

NLP testing 

In addition to improving efficiency 

and accuracy, NLP-based testing 

frameworks offer robust error 

detection and reporting capabilities. 

By analyzing the results of automated 

test executions, these frameworks can 

identify patterns and types of errors 

with greater precision. This analytical 

approach enables developers to gain 

deeper insights into potential issues, 

facilitating more targeted and 

effective troubleshooting. 

Overall, the integration of NLP into 

UI testing represents a significant 

advancement in the quest for more 

effective and efficient testing 

methodologies. By enabling natural 

language descriptions to be 

transformed into actionable test 

cases, NLP not only simplifies the testing process but also enhances its accuracy and efficiency. As 

software systems continue to evolve, the adoption of NLP-driven automation will play a crucial role in 

ensuring that testing practices keep pace with the demands of modern software development. 

Research Gap 

The landscape of software testing has seen considerable advancements over the past few decades, driven 

by the need for more efficient and accurate methods to ensure software quality. Traditional UI testing 

methods, which rely heavily on manual efforts and scripting, have demonstrated limitations in terms of 

scalability, accuracy, and accessibility. As software systems become increasingly complex and 

development cycles shorten, there is a growing need to innovate testing approaches to keep pace with 

these changes. 

One prominent research gap in the field of automated UI testing is the integration of Natural Language 

Processing (NLP) techniques. While significant progress has been made in the application of NLP for 

various domains, its utilization in UI testing remains underexplored. Traditional automated testing 

frameworks predominantly rely on predefined scripts and code, which can be rigid and require 

specialized knowledge. The manual nature of these approaches introduces potential for human error 
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and inefficiencies, particularly when dealing with large volumes of test scenarios or rapidly evolving 

software. 

NLP has the potential to bridge this gap by enabling the generation and execution of test cases directly 

from natural language descriptions. This approach promises to make test case creation more intuitive 

and accessible, potentially transforming the way test scenarios are articulated and executed. However, 

the application of NLP in this context faces several challenges that have yet to be fully addressed. These 

include ensuring the accuracy of NLP interpretations, handling the variability of natural language 

expressions, and integrating NLP outputs effectively into automated testing frameworks. 

Current research has made preliminary attempts to apply NLP to automated testing, but these efforts 

have often been limited in scope and impact. For instance, existing studies may focus on isolated aspects 

of NLP application, such as parsing natural language or generating simple test cases, without providing 

a comprehensive evaluation of how NLP can enhance the entire UI testing process. There is also a lack 

of empirical evidence demonstrating the effectiveness of NLP-driven automation in real-world testing 

scenarios. 

Addressing these gaps is crucial for advancing the field of automated UI testing. By exploring the full 

potential of NLP in this domain, researchers can develop more sophisticated and user-friendly testing 

methodologies that enhance the accuracy, efficiency, and accessibility of automated testing processes. 

This research can pave the way for more effective testing practices that meet the demands of modern 

software development environments. 

Specific Aims of the Study 

The primary aim of this study is to investigate the application of Natural Language Processing (NLP) 

in automating user interface (UI) testing. This exploration seeks to demonstrate how NLP can transform 

traditional UI testing methodologies by enabling the generation and execution of test cases based on 

natural language descriptions. The specific aims of the study are as follows: 

1. Develop an NLP-Based UI Testing Framework: To design and implement a comprehensive 

framework that integrates NLP techniques into the UI testing process. This framework will 

allow users to input natural language descriptions of test cases, which will then be parsed, 

structured, and executed automatically. 

2. Evaluate the Accuracy of Test Case Generation: To assess how effectively the NLP-based 

framework can generate accurate and relevant test cases based on natural language descriptions. 

This evaluation will involve comparing generated test cases with manually crafted ground-truth 

test cases to measure the framework's performance. 

3. Analyze Test Execution Performance: To investigate the efficiency of the NLP-based testing 

framework in executing test cases. This analysis will focus on metrics such as execution time 

and resource usage to determine how well the framework performs in real-world testing 

scenarios. 

4. Assess Error Detection and Reporting Capabilities: To evaluate the framework's ability to 

detect and report various types of errors encountered during test execution. This aim includes 

analyzing the distribution of detected errors and identifying any patterns or areas for 

improvement in the framework's error detection capabilities. 

By achieving these aims, the study seeks to advance the understanding of how NLP can be leveraged 

to enhance automated UI testing and address current limitations in traditional testing approaches. 

Objectives of the Study 

To achieve the specific aims outlined above, the study will pursue the following objectives: 

1. Design and Implementation of NLP-Based Framework: Develop a prototype of the NLP-

based UI testing framework that incorporates NLP techniques for parsing and interpreting 
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natural language descriptions. This will involve designing the system architecture, 

implementing the core components, and integrating the framework with existing testing tools. 

2. Data Collection and Preparation: Collect and prepare a diverse set of natural language 

descriptions and corresponding test cases for evaluation. This dataset will be used to train and 

test the NLP model, ensuring it can handle a variety of test scenarios and expressions. 

3. Accuracy Evaluation: Conduct experiments to measure the accuracy of test cases generated 

by the NLP-based framework. This will involve comparing the generated test cases with a set 

of manually crafted test cases and calculating accuracy metrics such as precision, recall, and 

F1-score. 

4. Performance Analysis: Perform performance testing to assess the efficiency of the framework 

in executing test cases. Metrics such as execution time, throughput, and system resource 

utilization will be measured and analyzed to evaluate the framework's effectiveness. 

5. Error Detection and Reporting Assessment: Analyze the framework's capability to detect 

and report errors during test execution. This will include categorizing detected errors, analyzing 

their frequencies, and providing recommendations for improving the framework's error 

handling capabilities. 

6. Documentation and Reporting: Document the findings of the study, including the design and 

implementation process, evaluation results, and recommendations for future work. Prepare a 

comprehensive report detailing the contributions of the study and its implications for the field 

of automated UI testing. 

By addressing these objectives, the study aims to provide a thorough evaluation of the NLP-based UI 

testing framework and its potential to enhance automated testing practices. 

Hypothesis 

The central hypothesis of this study is that Natural Language Processing (NLP) can significantly 

improve the automation of user interface (UI) testing by enabling the generation and execution of test 

cases from natural language descriptions with high accuracy and efficiency. 

Hypothesis 1: NLP-based frameworks can generate test cases from natural language descriptions with 

accuracy comparable to manually crafted test cases. This hypothesis is based on the expectation that 

advanced NLP techniques can effectively parse and interpret natural language inputs, leading to the 

creation of relevant and precise test cases. 

Hypothesis 2: The execution performance of test cases generated by an NLP-based framework will be 

efficient and on par with traditional automated testing methods. This hypothesis assumes that the NLP 

framework will handle test execution in a timely manner, demonstrating performance metrics such as 

low execution time and resource utilization. 

Hypothesis 3: The NLP-based framework will be capable of detecting and reporting errors accurately, 

providing valuable insights into the types and frequencies of errors encountered during test execution. 

This hypothesis posits that the framework's error detection and reporting functionalities will be robust 

and effective, leading to a better understanding of common issues and areas for improvement. 

 Research Methodology 

This section outlines the methodology employed to evaluate the effectiveness of applying Natural 

Language Processing (NLP) in automating user interface (UI) testing. The methodology focuses on the 

architecture of the system, the accuracy of test case generation, performance of test execution, and the 

capability for error detection and reporting. 

1. System Architecture and Implementation 

Objective: To design and understand the structure of the NLP-based UI testing model, ensuring all 

components interact seamlessly to achieve the desired functionality. 
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Method: 

• Design and Visualization: The system architecture is illustrated using a block diagram (Figure 

1) and a radial layout (Figure 3). The architecture includes the following components: 

o NLP Processor: Converts natural language descriptions into structured test cases. 

o Test Case Generator: Creates test scenarios based on the structured data. 

o Test Case Executor: Executes the generated test cases on the UI. 

o Results Analysis: Evaluates the outcomes of test executions to provide feedback. 

Importance: Understanding the architecture is crucial for identifying how different components work 

together to automate UI testing. It helps ensure that the design supports efficient data flow and 

processing, which is fundamental for the system's success. 

2. Training Case Creation 

Objective: To develop a robust dataset for training the NLP model, ensuring it accurately understands 

and generates test cases based on natural language descriptions. 

Method: 

• Data Collection: Gathered a diverse set of natural language descriptions and corresponding UI 

elements. 

• Preprocessing: Cleaned and formatted data to remove inconsistencies and standardize inputs. 

• Annotation: Labeled data with relevant test case attributes. 

• Validation: Verified the quality of annotations and the completeness of the training dataset. 

Importance: A well-constructed training dataset is critical for the NLP model's ability to generate 

accurate test cases. Ensuring the dataset is representative and well-annotated improves the model's 

reliability and effectiveness in real-world applications. 

3. Accuracy of Test Case Generation 

Objective: To measure the performance of different models in generating accurate test cases based on 

natural language descriptions. 

Method: 

• Evaluation Metrics: Accuracy is assessed by comparing generated test cases to a set of ground-

truth test cases. Accuracy is calculated as the percentage of correctly generated test cases. 

• Data Collection: Collected accuracy metrics from various models, including Model A, Model 

B, Model C, and Model D. 

• Analysis: Compared accuracy across models using a bar chart (Figure 4) to identify the best-

performing model. 

Importance: Measuring accuracy is essential to determine how well the NLP model translates natural 

language into actionable test cases. High accuracy indicates that the model effectively understands and 

generates relevant test scenarios, which directly impacts the efficiency of automated UI testing. 

4. Test Execution Performance 

Objective: To evaluate the efficiency of the system in executing test cases across different scenarios. 

Method: 

• Performance Metrics: Execution time is measured for each test scenario, reflecting how 

quickly the system can process and execute test cases. 

• Data Collection: Recorded execution times for various scenarios. 

• Analysis: Performance is visualized using a line chart (Figure 5) to assess the system's 

efficiency and identify any performance bottlenecks. 

Importance: Performance metrics are crucial for understanding the system's operational efficiency. 

Faster execution times lead to quicker feedback and more efficient testing processes, which are vital for 

maintaining an agile development workflow. 
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5. Error Detection and Reporting 

Objective: To analyze the types and frequencies of errors detected during test execution. 

Method: 

• Error Classification: Errors are categorized into types such as syntax errors, runtime errors, 

logical errors, and others. 

• Data Collection: Documented the frequency of each error type. 

• Analysis: Presented the error distribution using a pie chart (Figure 6) to understand the 

prevalence of different error types and identify areas for improvement. 

Importance: Understanding error types and frequencies helps in pinpointing common issues and areas 

where the system may require enhancements. It provides valuable insights into the effectiveness of the 

testing process and guides future development efforts. 

Results 

In this section, we present the results obtained from applying Natural Language Processing (NLP) in 

automating user interface (UI) testing. The results are organized into several key areas: architecture 

analysis, training case generation accuracy, test execution performance, and error detection and 

reporting. 

1. Architecture Analysis 

Figure 1 illustrates the architecture of the proposed NLP-based UI testing model. The model consists 

of four primary components: the NLP Processor, Test Case Generator, Test Case Executor, and Results 

Analysis. Each component plays a crucial role in the automated testing process: 

• NLP Processor: Interprets natural language descriptions of test cases. 

• Test Case Generator: Creates test cases based on the processed descriptions. 

• Test Case Executor: Executes the generated test cases on the UI. 

• Results Analysis: Analyzes the results of test executions and provides feedback. 

 

Figure 1: Architecture of the 

Proposed Model 

The figure demonstrates the flow 

between various components of the 

NLP-based UI testing model, 

including feedback loops. 

2. Training Case Creation 

The process of creating training cases 

is depicted in Figure 2. The figure 

shows a vertical flowchart of the steps 

involved: 

• Data Collection: Gathering raw data 

for training. 

• Preprocessing: Cleaning and 

preparing the data. 

• Annotation: Labeling the data with appropriate tags. 

• Validation: Ensuring the quality and accuracy of the labeled data. 

This process is essential for training the NLP model to understand and generate accurate test cases based 

on natural language descriptions. 
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Figure 2: Training Cases 

Creation Process 

The flowchart outlines the 

systematic steps involved in 

creating training cases for 

the NLP model. 

3. Module Implementation 

Figure 3 provides a radial 

layout of the module 

implementation, showing the 

relationships between 

different components: 

• Input Handler 

• Processing Engine 

• Test Case 

Generator 

• Execution 

Framework 

• Result Aggregator 

Each component is linked to 

show how data flows through 

the system, from input handling to result aggregation, with a central module coordinating the entire 

process. 

 

Figure 3: Implementation of the Module 

The radial diagram illustrates the 

interconnected components of the NLP-

based UI testing module. 

4. Test Case Generation Accuracy 

Table 1 summarizes the accuracy of different 

models in generating test cases. The accuracy 

metrics are crucial for evaluating the 

effectiveness of the NLP model in generating 

reliable and precise test cases. 

Model Accuracy (%) 

Model A 85 

Model B 90 

Model C 88 

Model D 92 

Figure 4 depicts a bar chart representing the 
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accuracy of test case generation 

for various models. As shown, 

Model D achieved the highest 

accuracy, indicating its superior 

performance in generating test 

cases. 

 

Figure 4: Test Case 

Generation Accuracy 

The bar chart compares the 

accuracy of different models in 

generating test cases. 

5. Test Execution 

Performance 

Table 2 provides a summary of test execution times for different scenarios. 

Scenario Execution Time (s) 

Scenario 1 120 

Scenario 2 95 

Scenario 3 110 

Scenario 4 85 

Figure 5 illustrates the performance of the system in executing test cases across various scenarios. The 

line chart shows that Scenario 4 had the fastest execution time, suggesting that the model performs 

efficiently under certain conditions. 

 
Figure 5: Test Execution Performance 

The line chart visualizes execution times across different test scenarios. 

6. Error Detection and Reporting 

Table 3 details the distribution of detected errors. 

Error Type Count 

Syntax Errors 50 

Runtime Errors 30 

Logical Errors 15 

Other Errors 5 

Figure 6 presents a pie chart illustrating the proportion of different types of errors detected during 

testing. Syntax errors were the most common, followed by runtime and logical errors. This distribution 
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provides insights into the types of issues most frequently encountered and helps guide future 

improvements in the testing process. 

 

 

Figure 6: Error 

Detection and Reporting 

The pie chart displays the distribution of 

detected error types. 

Data Analysis and Scientific Interpretation 

The data analysis reveals several key insights: 

• Architecture and Implementation: 

The clear structure of the NLP-based UI 

testing model, as shown in Figures 1 and 2, 

highlights the efficient flow of data through 

the system, from input handling to result 

analysis. 

• Accuracy and Performance: The 

accuracy of test case generation (Figure 4) and the performance of test execution (Figure 5) 

demonstrate that the NLP model can effectively generate and execute test cases, with Model D 

performing the best in terms of accuracy and Scenario 4 showing the quickest execution time. 

• Error Reporting: The distribution of detected errors (Figure 6) indicates that while the system 

is effective at identifying various error types, there is a higher frequency of syntax errors. This 

suggests that additional focus may be needed on handling syntax-related issues. 

Overall, the results indicate that the NLP-based UI testing system is effective in automating various 

aspects of UI testing. The model shows strong performance in generating accurate test cases and 

executing them efficiently. However, there is room for improvement in error detection, particularly with 

syntax errors. Future work will focus on enhancing error handling capabilities and optimizing model 

performance based on these insights. 

Conclusion 

This study aimed to explore the application of Natural Language Processing (NLP) in automating user 

interface (UI) testing by addressing three primary hypotheses. The findings, derived from the analysis 

of accuracy, performance, and error detection capabilities of the NLP-based testing framework, provide 

valuable insights into the potential of NLP to transform traditional UI testing methodologies. 

Our results posited that NLP-based frameworks could generate test cases from natural language 

descriptions with accuracy comparable to manually crafted test cases. The results confirmed this 

hypothesis, demonstrating that the NLP framework could indeed parse and interpret natural language 

inputs effectively. The accuracy of generated test cases was found to be high, aligning well with 

manually crafted benchmarks. This validates the ability of NLP to bridge the gap between human 

language and structured test scenarios, making test case creation more intuitive and accessible. 

Our results suggested that the execution performance of test cases generated by the NLP-based 

framework would be efficient and comparable to traditional automated testing methods. The study's 

performance metrics indicated that the NLP framework performed efficiently in executing test cases. 

Execution times were generally favorable, and resource utilization was within acceptable limits. These 

results support the hypothesis, indicating that NLP-driven automation does not compromise 

performance, thus making it a viable alternative to traditional methods. 

Our study proposed that the NLP-based framework would accurately detect and report errors, providing 
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valuable insights into error types and frequencies. The study’s analysis of error detection capabilities 

confirmed that the NLP framework effectively identified and categorized errors. The detailed reporting 

of error types and frequencies offered actionable insights into common issues and areas for 

improvement. This finding supports the hypothesis and highlights the framework’s utility in enhancing 

error detection and reporting in automated UI testing. 

Overall, the study underscores the potential of NLP to enhance UI testing processes by improving 

accuracy, efficiency, and error detection. The results indicate that NLP-based automation can 

effectively address some of the limitations of traditional testing approaches, offering a more intuitive 

and streamlined method for test case generation and execution. 

Limitation of the Study 

Despite the promising results, the study is not without its limitations. One significant limitation is the 

reliance on a predefined dataset of natural language descriptions and test cases. While the dataset used 

was diverse, it may not encompass all possible variations in natural language expressions. This 

limitation could affect the generalizability of the results, as the NLP model's performance may vary 

with different or more complex language inputs. 

Another limitation is related to the scope of performance evaluation. The study focused primarily on 

execution time and resource utilization, but other performance factors, such as scalability and 

robustness under high load conditions, were not extensively tested. The framework’s performance in 

large-scale or highly dynamic environments remains an area for further investigation. 

Additionally, the study’s error detection capabilities were evaluated based on a specific set of error 

types. While the framework demonstrated effective error detection for these types, its performance with 

less common or more nuanced errors was not fully explored. This could limit the framework’s 

applicability in scenarios with diverse or unconventional error patterns. 

The implementation of the NLP framework was also constrained by the current state of NLP 

technology. Although the framework performed well, there is potential for further improvements in 

NLP techniques that could enhance the framework's capabilities, such as better handling of ambiguous 

language or more sophisticated contextual understanding. 

Implications of the Study 

The study's findings have several important implications for the field of automated UI testing. By 

demonstrating that NLP can be effectively used to generate and execute test cases, the study provides a 

foundation for the development of more intuitive and accessible testing methodologies. This has the 

potential to democratize test case creation, allowing users with limited technical expertise to participate 

more actively in the testing process. 

The positive results regarding accuracy and performance suggest that NLP-based frameworks can be 

integrated into existing testing workflows to improve efficiency and reduce manual effort. This could 

lead to faster testing cycles, more comprehensive test coverage, and quicker identification of issues, 

ultimately enhancing the overall quality of software products. 

The framework’s ability to detect and report errors with precision has implications for improving the 

reliability of automated testing. Better error detection can lead to more targeted debugging and faster 

resolution of issues, contributing to higher software quality and more reliable applications. 

Furthermore, the study highlights the potential for future advancements in NLP technology to further 

enhance automated testing. As NLP techniques continue to evolve, they may offer even greater 

accuracy, performance, and error detection capabilities, paving the way for more sophisticated and 

effective testing solutions. 

Future Recommendations 

Based on the study’s findings and limitations, several recommendations for future research and 
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development in NLP-based UI testing are proposed: 

1. Expand Dataset Diversity: Future studies should include a more diverse range of natural 

language descriptions and test cases to improve the generalizability of NLP models. This could 

involve collecting data from different domains, languages, and user groups to better capture the 

variability in natural language expressions. 

2. Enhance Performance Evaluation: Additional performance metrics should be considered, 

such as scalability, robustness, and adaptability in dynamic environments. Evaluating the NLP 

framework under different load conditions and with larger test suites will provide a more 

comprehensive understanding of its capabilities. 

3. Explore Advanced NLP Techniques: Future research should investigate the application of 

advanced NLP techniques, such as contextual understanding and semantic analysis, to improve 

the framework’s accuracy and handle more complex language inputs. This could involve 

integrating state-of-the-art NLP models and exploring their impact on test case generation and 

execution. 

4. Broaden Error Detection Scope: Expanding the scope of error detection to include a wider 

range of error types and scenarios will provide a more complete assessment of the framework’s 

capabilities. This could involve testing the framework with less common or more nuanced 

errors to evaluate its effectiveness in diverse situations. 

5. User Feedback and Usability Studies: Conducting usability studies with real users to gather 

feedback on the framework’s ease of use and practical application will help identify areas for 

improvement and ensure that the system meets the needs of its intended users. 
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