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Stability of Quadratic Functional Equation  
Sonu Bansal 

1. Introduction  

In 1897, Hensel [1] introduced a normed space which does not have the Archimedean property. It turned out 

that non-Archimedean spaces have many nice applications (see [2–5]). 

A valuation is a function | · | from a field K into [0, ∞) such that 0 is the unique element having the 0 

valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e., 

 

A field K is called a valued field if K carries a valuation. Throughout this paper, we assume that the base field 

is a valued field, hence call it simply a field. The usual absolute values of ℝ and ℂ are examples of valuations. 

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the triangle 

inequality is replaced by 

 

then the function | · | is called a non-Archimedean valuation, and the field is called a non-Archimedean field. 

Clearly, |1| = | - 1| = 1 and |n| ≤ 1 for all n ∈ ℕ. A trivial example of a non-Archimedean valuation is the 

function | · | taking everything except for 0 into 1 and |0| = 0. 

Definition 1.1. Let X be a vector space over a field K with a non-Archimedean valuation | · |. A function || · || 

: X → [0, ∞) is said to be a non-Archimedean norm if it satisfies the following conditions: 

(i) ||x|| = 0 if and only if x = 0; 

(ii) ||rx|| = |r| ||x|| (r ∈ K, x ∈ X); 

(iii) the strong triangle inequality 

 

holds. Then (X, || · ||) is called a non-Archimedean normed space. 

Definition 1.2. (i) Let {x n } be a sequence in a non-Archimedean normed space X. Then the sequence {x n }is 

called Cauchy if for a given ε > 0 there is a positive integer N such that 

 

for all n, m ≥ N. 

(ii) Let {x n } be a sequence in a non-Archimedean normed space X. Then the sequence {x n } is called 

convergent if for a given ε > 0 there are a positive integer N and an x ∈ X such that 

 

for all n ≥ N. Then we call x ∈ X a limit of the sequence {x n }, and denote by lim n→∞ x n = x. 

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a non-

Archimedean Banach space. 

Assume that X is a real inner product space and f : X → ℝ is a solution of the orthogonal Cauchy functional 

equation f(x + y) = f(x) + f(y), 〈x, y〉 = 0. By the Pythagorean theorem, f(x) = ||x||
2
 is a solution of the 

conditional equation. Of course, this function does not satisfy the additivity equation everywhere. Thus, 

orthogonal Cauchy equation is not equivalent to the classic Cauchy equation on the whole inner product space. 

http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR1_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR2_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR5_113
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Pinsker [6] characterized orthogonally additive functionals on an inner product space when the orthogonality is 

the ordinary one in such spaces. Sundaresan [7] generalized this result to arbitrary Banach spaces equipped 

with the Birkhoff-James orthogonality. The orthogonal Cauchy functional equation 

 

in which ⊥ is an abstract orthogonality relation was first investigated by Gudder and Strawther [8]. They 

defined ⊥ by a system consisting of five axioms and described the general semi-continuous real-valued 

solution of conditional Cauchy functional equation. In 1985, Rätz [9] introduced a new definition of 

orthogonality by using more restrictive axioms than of Gudder and Strawther. Moreover, he investigated the 

structure of orthogonally additive mappings. Rätz and Szabó [10] investigated the problem in a rather more 

general framework. 

Let us recall the orthogonality in the sense of Rätz; cf. [9]. 

Suppose X is a real vector space with dim X ≥ 2 and ⊥ is a binary relation on X with the following properties: 

(O 1) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X; 

(O 2) independence: if x, y ∈ X - {0}, x ⊥ y, then x, y are linearly independent; 

(O 3) homogeneity: if x, y ∈ X, x ⊥ y, then αx ⊥ βy for all α, β ∈ ℝ; 

(O 4) the Thalesian property: if P is a 2-dimensional subspace of X, x ∈ P and λ ∈ ℝ+, which is the set of non-

negative real numbers, then there exists y 0 ∈ P such that x ⊥ y 0 and x + y 0 ⊥ λx - y 0. 

The pair (X, ⊥) is called an orthogonality space. By an orthogonality normed space we mean an orthogonality 

space having a normed structure. 

Some interesting examples are 

(i) The trivial orthogonality on a vector space X defined by (O 1), and for non-zero elements x, y ∈ X, x ⊥ y if 

and only if x, y are linearly independent. 

(ii) The ordinary orthogonality on an inner product space (X, 〈., .〉) given by x ⊥ y if and only if 〈x, y〉 = 

0. 

The first author treating the stability of the quadratic equation was Skof [25] by proving that if f is a mapping 

from a normed space X into a Banach space Y satisfying ||f(x + y) + f(x - y) - 2f(x) - 2f(y)|| ≤ ε for some ε > 0, 

then there is a unique quadratic mapping g : X → Y such that  . Cholewa [26] extended the 

Skof's theorem by replacing X by an abelian group G. The Skof's result was later generalized by Czerwik [27] 

in the spirit of Hyers-Ulam-Rassias. The stability problem of functional equations has been extensively 

investigated by some mathematicians (see [28–32]). 

The orthogonally quadratic equation 

 

was first investigated by Vajzović [33] when X is a Hilbert space, Y is the scalar field, f is continuous and ⊥ 

means the Hilbert space orthogonality. Later, Drljević [34], Fochi [35] and Szabó [36] generalized this result. 

See also [37]. 

The stability problems of several functional equations have been extensively investigated by a number of 

authors, and there are many interesting results concerning this problem (see [38–51]). 

Katsaras [52] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the 

space. In particular, Bag and Samanta [53], following Cheng and Mordeson [54], gave an idea of fuzzy norm 

in such a manner that the corresponding fuzzy metric is of Karmosil and Michalek type [55]. They established 

a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of 

fuzzy normed spaces [56]. 

http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR6_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR7_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR8_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR9_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR10_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR9_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR25_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR26_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR27_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR28_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR32_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR33_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR34_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR35_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR36_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR37_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR38_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR51_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR52_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR53_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR54_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR55_113
http://link.springer.com/article/10.1186%2F1687-1847-2011-62/fulltext.html#CR56_113
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Definition 1.3. (Bag and Samanta [53]) Let X be a real vector space. A function N : X × ℝ → 0[1]is called a 

fuzzy norm on X if for all x, y ∈ X and all s, t ∈ ℝ, 

(N1) N(x, t) = 0 for t ≤ 0; 

(N2) x = 0 if and only if N(x, t) = 1 for all t > 0; 

(N3)  if c ≠ 0; 

(N4) N(x + y, c + t) ≥ min{N(x, s), N(y, t)}; 

(N5) N(x,.) is a non-decreasing function of ℝ and lim t→∞ N(x, t) = 1; 

(N6) for x ≠ 0, N(x,.) is continuous on ℝ. 

The pair (X, N) is called a fuzzy normed vector space. The properties of fuzzy normed vector space and 

examples of fuzzy norms are given in (see [57, 58]). 

Example 1.1. Let (X, ||.||) be a normed linear space and α, β > 0. Then 
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